美文网首页
手把手教你如何进行业务系统数据库技术选型

手把手教你如何进行业务系统数据库技术选型

作者: AI课工场 | 来源:发表于2020-09-15 13:18 被阅读0次

随着云计算、大数据、物联网时代的到来,越来越多的网民涌入互联网,越来越多的应用系统需要支撑海量数据存储,还需要随着业务需求满足高并发、高可靠、高扩展性等要求,传统的关系型数据库已经不能完全满足需求了,因此NoSQL应运而生。

那么SQL是什么?、NoSQL又是什么业务系统如何数据库技术选型呢

NoSQL!=  NO SQL,而是NotOnlySQL,作为关系型数据库的补充而出现。关系型数据库即采用了关系模型来组织的数据库,简单来说,就是二维表格模型,包含关系(表名)、元组(二维表中的一行)、属性(二维表中的一列)、域(属性的取值范围)、关键字(唯一能标识元组的属性)、关系模式(表结构,对关系的描述)等概念。以一个用户信息表来说,用户信息表就是整个关系,元组就是姓名、性别、年龄、电话、地域组成的一行记录,属性则是单独的地域列、年龄列等,域就是地域是中国全省市等,关键字就是用户ID、能唯一标识这个用户,关系模式就是这整个表,包含姓名、性别、年龄、电话、地域属性。

对于关系型数据库来说,一直非常流行的原因有如下四个:1、强事务一致性,数据库的ACID(原子性、一致性、隔离性、持久性)保障了所有记录的数据全是准确的,对于早期互联网来说,大家都不完全信任看不到摸不着的东西,所以这个特点非常重要;

2、容易理解,二维表的结构非常贴合现实世界。

3、使用方便,通用的sql语言使得操作关系型数据库非常方便;

4、容易维护,在设计的时候采用了实体完整性、参照完整性等理念,减少了数据冗余和数据不一致。常用的关系型数据库有Mysql、Oracle等。

然而随着互联网海量数据的增加,关系型数据库也产生了瓶颈,具体表现如下:

1、无法应对高并发的读写请求,关系型数据库是以行结构来存储的,比如我们想获取某个地域的用户名单,需要按行读取,再获取其中的用户名字这一属性,对于磁盘的IO消耗非常大;

2、无法弹性伸缩,关系型数据库无法像webserver那样简单的通过增加更多的硬件和服务节点来扩展性能,对于数据库海量剧增的今天、服务需要24小时提供的企业来说,这非常难受;

3、不再需要事务强一致性、读写实时性,早期这是关系型数据库的优点,而随着互联网业务覆盖范围的广泛,用户可以接受一定的延迟、一定的错误。

因此NoSQL关系型数据库出现了,作为关系型数据库的补充,再根据互联网时代的需求不同,可以分为:

1、支持高性能并发读写的Key-Value数据库,如Redis;

2、支持海量数据访问的文档数据库,如MongoDB、CouchDB;

3、支持大数据存储和分析的列式数据库,如HBase;

4、支持全文搜索的搜索引擎数据库,如ElasticSearch。

数据库的使用根据具体的业务场景而确定,毫无疑问,涉及交易场景,关系型数据库是必不可失的,因为我们要求数据必须一致,不能允许任何的差错出现。在大部分互联网企业中,一般是SQL与NoSQL配合使用。现以某高速发展的电商网站来聊聊如何技术选型?

业务类型来看,电商具备用户量&订单量高速增长、网站延迟低、对部分数据准确性要求高的特点,因此需要数据库能支持高读写的并发量、低延迟高吞吐、安全稳定、高可用的特点。从数据类型来看,包含用户个人信息数据、商品信息数据、交易数据三类,对于交易数据需要保证不能出错,而其它类数据则要求能存储不出错。从数据驱动运营的角度来看,未来会利用用户在平台产生的所有数据进行数据分析、智能推荐、二次营销等。综上所述,我们选择的数据库是MySQL与MongoDB。

选择MySQL毫无疑问是为了保证业务核心数据如用户信息、交易数据等不能出错,这是关系型数据库的最大优势。选择MongoDB则是因为其高可用、文档模型的特点。关于高可用,首先MongoDB的架构是primary、secondary模式,一个主节点接受server的读写,两个从节点同步primary主节点的数据,当主节点发生故障时,从节点进行选举,产生新的主节点,从而保障了业务的高可用。

其次MongoDB支持数据分片,当业务量急速扩展时,原先部署数据库的五台服务器就不够了,现在需要增加服务器节点数,对于Mysql来说,采用分库分表就可以解决问题,对于MongoDB则是通过将一个集合上的数据按片键分到不同的分片上,减少同一个数据文件上的数据量,再通过配置文件将数据引向不同的分片即可。

最后MongoDB支持文档模型,可以根据业务数据类型的变化来去增加或删减字段,而不需要按照确定的表结构去增加删除。比如在Mysql中,当一个用户填写了家里的收货地址、公司收货地址、朋友收货地址等多个地址时,需要建立联系人表、地址表将其关联,而在MongoDB中只需要一个集合就可以搞定了。

在数据库选型我们都需要考虑数据量并发量实时性一致性读写分布数据类型安全性运维成本都指标,常见的系统数据库选型如下所示:

现在假设你在主导或参与一个系统的开发,相信你已经非常清楚如何选型数据库、如何应对后续出现的问题了吧?知其然知其所以然~

相关文章

网友评论

      本文标题:手把手教你如何进行业务系统数据库技术选型

      本文链接:https://www.haomeiwen.com/subject/mfskektx.html