美文网首页
MessageQueue, Looper源码分析(Native层

MessageQueue, Looper源码分析(Native层

作者: 又尔enter | 来源:发表于2018-04-18 16:59 被阅读0次

本源码分析基于Android8.0

源码目录

Java层
framework/base/core/java/andorid/os/MessageQueue.java
framework/base/core/java/andorid/os/Looper.java

Native层
system/core/libutils/include/utils/RefBase.h
system/core/libutils/RefBase.cpp

framework/base/core/jni/android_os_MessageQueue.h
framework/base/core/jni/android_os_MessageQueue.cpp

system/core/libutils/include/utils/Looper.h
system/core/libutils/Looper.cpp 

framework/native/include/android/looper.h
framework/base/native/android/looper.cpp 

回顾

  在上一篇文章中,我们讲解了Handler,Looper,MessageQueue的关系,其中在MessageQueue的next方法中有这样一段代码

Message next() {
        ....
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);
        }
        ...
}

而添加消息入队的时候,有这样一段代码

boolean enqueueMessage(Message msg, long when) {
        ...
        synchronized (this) {
                ...
                if (p == null || when == 0 || when < p.when) {
                        // New head, wake up the event queue if blocked.
                        msg.next = p;
                        mMessages = msg;
                        needWake = mBlocked;
                 }
                ...
                // We can assume mPtr != 0 because mQuitting is false.
                if (needWake) {
                        nativeWake(mPtr);
                }        
        }
}

同样Looper里面

public static void loop() {
        ...
        for (;;) {
            Message msg = queue.next(); // might block
        }
        ...
}

  通过以上三段代码和注释可以看出,添加消息的时候有可能在阻塞状态:即之前消息队列为空,取消息的时候也可能在阻塞状态,为什么会这样呢,阻塞不会导致ANR吗?其实关键就在于两个native方法身上nativePollOnce和nativeWake****
  ** 它的本质就是Linux的管道。管道,其本质是也是文件,但又和普通的文件会有所不同:管道缓冲区大小一般为1页,即4K字节。管道分为读端和写端,读端负责从管道拿数据,当数据为空时则阻塞;写端向管道写数据,当管道缓存区满时则阻塞。**

接下来我们进入Native层

UML图

uml.png

首先查看MessageQueue.java里面的native方法

    MessageQueue.java

    private native static long nativeInit();
    private native static void nativeDestroy(long ptr);
    private native void nativePollOnce(long ptr, int timeoutMillis); /*non-static for callbacks*/
    private native static void nativeWake(long ptr);
    private native static boolean nativeIsPolling(long ptr);
    private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);

    //构造函数
    MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }

我们发现调用了nativeInit()方法,我们进入native层看它做了什么

android_os_MessageQueue.cpp

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
    if (!nativeMessageQueue) {
        jniThrowRuntimeException(env, "Unable to allocate native queue");
        return 0;
    }

    nativeMessageQueue->incStrong(env);
    return reinterpret_cast<jlong>(nativeMessageQueue);
}

它就是生成一个NativeMessageQueue()对象,那我们去看构造函数做了什么

NativeMessageQueue::NativeMessageQueue() :
        mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
    mLooper = Looper::getForThread();
    if (mLooper == NULL) {
        mLooper = new Looper(false);
        Looper::setForThread(mLooper);
    }
}

发现它生成了Looper对象,这个是native层的,跟java层的Looper不一样,它几乎重写了java层的Looper逻辑。

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);//1
    LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd: %s",
                        strerror(errno));

    AutoMutex _l(mLock);//2
    rebuildEpollLocked();//3
}

1,eventfd(),使用这个函数来创建一个事件对象,该函数返回一个文件描述符来代表这个事件对象,之后我们就用这个来调用对象;
2,AutoMutex _l(),给mLock对象加锁;执行完后自动释放锁,它的原理是利用了c++的构造和析构函数完成自动加锁和放锁。
3,rebuildEpollLocked(),重建epoll事件。

接下来看rebuildEpollLocked

void Looper::rebuildEpollLocked() {
    // Close old epoll instance if we have one.
    if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
        ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
//关闭旧的epoll
        close(mEpollFd);
    }

    // Allocate the new epoll instance and register the wake pipe.
   //创建新的epoll并注册管道,参数表示监听的文件描述符数目,它向内核申请了一段内存空间
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;//把之前创建的mWakeEventFd赋给item
   //把之前生成的mWakeEventFd加入到 epoll,eventItem也加入epoll,这样就能控制我们的mWakeEventFd所表示的对象了
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance: %s",
                        strerror(errno));

    for (size_t i = 0; i < mRequests.size(); i++) {
        const Request& request = mRequests.valueAt(i);
        struct epoll_event eventItem;
        request.initEventItem(&eventItem);

        int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
        if (epollResult < 0) {
            ALOGE("Error adding epoll events for fd %d while rebuilding epoll set: %s",
                  request.fd, strerror(errno));
        }
    }
}

注意int epoll_ctl(int epfd, intop, int fd, struct epoll_event* event);
他是epoll的事件注册函数:
  第一个参数是epoll_create()的返回值,
  第二个参数表示动作,用三个宏来表示:
  EPOLL_CTL_ADD: 注册新的fd到epfd中;
  EPOLL_CTL_MOD: 修改已经注册的fd的监听事件;
  EPOLL_CTL_DEL: 从epfd中删除一个fd;
  第三个参数是需要监听的fd,
  第四个参数是告诉内核需要监听什么事件

我们回到NativeMessageQueue::NativeMessageQueue()
它不是每次都生成新的Looper,而是保存到TSL中

void Looper::setForThread(const sp<Looper>& looper) {
    sp<Looper> old = getForThread(); // also has side-effect of initializing TLS

    if (looper != NULL) {
        looper->incStrong((void*)threadDestructor);
    }

    pthread_setspecific(gTLSKey, looper.get());

    if (old != NULL) {
        old->decStrong((void*)threadDestructor);
    }
}

  sp就类似于java的强引用,native层还有一个wp类似于java的弱引用,因为Android封装了c++的对象回收机制,具体的可阅读深入理解Android卷I相关源码
  TLS,即线程本地存储(Thread Local Storage),可以对比理解为Java层的ThreadLocal,在单线程模式下,所有整个程序生命周期的变量都是只有一份,那是因为只是一个执行单元;而在多线程模式下,有些变量需要支持每个线程独享一份的功能。这种每个线程独享的变量放到每个线程专有的存储区域,所以称为线程本地存储(Thread Local Storage)或者线程私有数据(Thread Specific Data)。
  那么到这里初始化就完成了,即创建NativeMessageQueue,创建Looper并保存到TLS中,Looper里面创建了epoll,注册了事件,之后我们就能收到回调,这里可以对比理解为setOnclickListener。最后返回生成的NativeMessageQueue指针(jlong类型)给Java层,注意reinterpret_cast是c++的强转,通常将一个类型指针转换为另一个类型指针 。

nativePollOnce()

在Looper的loop()死循环里面,会调用MessageQueue的next(),next()会调用nativePollOnce(),进入native层:

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}

这里传入了一个参数,就是刚刚调用nativeInit()得到的NativemessageQueue的jlong指针,再强转回来,然后调用pollOnce方法

MessageQueue.cpp

void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;
    mLooper->pollOnce(timeoutMillis);
    mPollObj = NULL;
    mPollEnv = NULL;

    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}

Looper.h

inline int pollOnce(int timeoutMillis) {
        return pollOnce(timeoutMillis, NULL, NULL, NULL);
}

Looper.cpp

int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        while (mResponseIndex < mResponses.size()) {
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
                ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
                        "fd=%d, events=0x%x, data=%p",
                        this, ident, fd, events, data);
#endif
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }

        if (result != 0) {
#if DEBUG_POLL_AND_WAKE
            ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }

        result = pollInner(timeoutMillis);
    }
}

pollOnce的timeoutMillis就是我们java层设置的超时参数,接下来调用pollInner


int Looper::pollInner(int timeoutMillis) {
    ...
    // Poll.
    int result = POLL_WAKE;
    mResponses.clear();
    mResponseIndex = 0;

    // We are about to idle.
    mPolling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    //关键方法
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);

    // No longer idling.
    mPolling = false;

    // Acquire lock.
    mLock.lock();

    // Rebuild epoll set if needed.
    if (mEpollRebuildRequired) {
        mEpollRebuildRequired = false;
        rebuildEpollLocked();
        goto Done;
    }

    // Check for poll error.
    if (eventCount < 0) {
        if (errno == EINTR) {
            goto Done;
        }
        ALOGW("Poll failed with an unexpected error: %s", strerror(errno));
        result = POLL_ERROR;
        goto Done;
    }

    // Check for poll timeout.
    if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
        ALOGD("%p ~ pollOnce - timeout", this);
#endif
        result = POLL_TIMEOUT;
        goto Done;
    }

    // Handle all events.
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        //找到我们注册事件的文件描述符
        if (fd == mWakeEventFd) {
            if (epollEvents & EPOLLIN) {
                //从epoll_wait()里唤醒了,读取管道内容
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        } else {
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
Done: ;

    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes.  Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();

#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
                        this, handler.get(), message.what);
#endif
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

    // Release lock.
    mLock.unlock();

    // Invoke all response callbacks.
    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            // Invoke the callback.  Note that the file descriptor may be closed by
            // the callback (and potentially even reused) before the function returns so
            // we need to be a little careful when removing the file descriptor afterwards.
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    return result;
}

最关键的方法就在epoll_wait()身上,这个方法会等待事件发生或者超时,在nativeWake()方法,向管道写端写入字符时,则该方法会返回,否则一直阻塞;注意result返回值有以下几种类型:

  POLL_WAKE,初始化状态,它表示由管道写入端触发,pipe write;
  POLL_ERROR阻塞等待期间发生错误,发生错误goto到Done处;
  POLL_TIMEOUT 发生超时;
  POLL_CALLBACK: 表示某个被监听的文件描述符被触发,比如我们nativeInit创建的mWakeEventFd;

当唤醒后,要不断的去从管道中读取数据,这时调用了awoken()方法

void Looper::awoken() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ awoken", this);
#endif

    uint64_t counter;
    TEMP_FAILURE_RETRY(read(mWakeEventFd, &counter, sizeof(uint64_t)));
}

很简单,就是从管道里读取内容,这是我们已经拿到Native层的Message了,在Done里面,我们会处理Message,并回调handler->handleMessage()方法,注意此handler非java层的handler,它是一个MessageHandler,Message等类在Looper.h中。

nativeWake()

接下来我们看是怎么唤醒的

android_os_MessageQueue.cpp

 static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->wake();
}

void NativeMessageQueue::wake() {
    mLooper->wake();
}

Looper.cpp

void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif

    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
                    mWakeEventFd, strerror(errno));
        }
    }
}

就是调用write()向管道写入一个整数1,TEMP_FAILURE_RETRY就是失败不断的重试,知道成功唤醒为止,成功写入后,管道的另一端就会接收到,并从阻塞状态结束,即从epoll_wait()返回,执行它后面的代码。

流程图

liu.png

相关文章

网友评论

      本文标题:MessageQueue, Looper源码分析(Native层

      本文链接:https://www.haomeiwen.com/subject/mgqpkftx.html