机器学习算法①

作者: 柳叶刀与小鼠标 | 来源:发表于2018-01-24 15:47 被阅读8次

机器学习算法

广泛地说,有三种类型的机器学习算法。

1.监督学习

这个算法由一个目标/结果变量(或因变量)组成,这个变量可以从一组给定的预测变量(独立变量)中预测出来。 使用这些变量,我们生成一个将输入映射到所需输出的函数。 训练过程一直持续到模型达到训练数据所需的准确度。 监督学习的例子:回归,决策树,随机森林,KNN,逻辑回归等。

2.无监督学习

在这个算法中,我们没有任何目标或结果变量来预测/估计。 用于不同群体的群体聚类,广泛用于不同群体的消费者细分进行具体干预。 无监督学习的例子:Apriori算法,K-means。

3.强化学习:

使用这种算法,机器被训练做出特定的决定。 它是这样工作的:机器暴露在一个环境中,它使用反复试验不断地训练自己。 这台机器从过去的经验中学习,并试图捕捉最好的知识,做出准确的业务决策。 强化学习实例:马尔可夫决策过程

  • 这里是常用的机器学习算法列表。 这些算法可以应用于几乎所有的数据问题:

线性回归
Logistic回归
决策树
SVM
朴素贝叶斯
KNN
K均值
随机森林
维度降低算法
梯度提升算法
GBM
XGBoost
LightGBM
CatBoost

1.线性回归

它用于根据连续变量估计实际值(房屋成本,通话次数,总销售额等)。在这里,我们通过拟合最佳线来建立独立和因变量之间的关系。该最佳拟合线被称为回归线,并由线性方程Y = a * X + b表示。

理解线性回归的最好方法是重温童年的这种体验。让我们说,你问一个五年级的孩子,通过增加体重的顺序来安排班上的人,而不要问他们的重量!你觉得孩子会做什么?他/她可能会查看(视觉分析)人的身高和身材,并使用这些可见参数的组合进行排列。这是现实生活中的线性回归!实际上,孩子已经找到了身高,身材与体重之间的关系,看起来像上面的方程式。

在这个等式中:

Y因变量
一个 - 坡度
X - 自变量
b - 拦截
这些系数a和b是基于最小化数据点与回归线之间的距离的平方和的总和而得出的。

看下面的例子。这里我们已经确定了具有线性方程y = 0.2811x + 13.9的最佳拟合线。现在使用这个等式,我们可以找到重量,知道一个人的身高。

R代码:

#Load Train and Test datasets
#Identify feature and response variable(s) and values must be numeric and numpy arrays
x_train <- input_variables_values_training_datasets
y_train <- target_variables_values_training_datasets
x_test <- input_variables_values_test_datasets
x <- cbind(x_train,y_train)
# Train the model using the training sets and check score
linear <- lm(y_train ~ ., data = x)
summary(linear)
#Predict Output
predicted= predict(linear,x_test) 

python:

#Import Library
#Import other necessary libraries like pandas, numpy...
from sklearn import linear_model
#Load Train and Test datasets
#Identify feature and response variable(s) and values must be numeric and numpy arrays
x_train=input_variables_values_training_datasets
y_train=target_variables_values_training_datasets
x_test=input_variables_values_test_datasets
# Create linear regression object
linear = linear_model.LinearRegression()
# Train the model using the training sets and check score
linear.fit(x_train, y_train)
linear.score(x_train, y_train)
#Equation coefficient and Intercept
print('Coefficient: \n', linear.coef_)
print('Intercept: \n', linear.intercept_)
#Predict Output
predicted= linear.predict(x_test)

相关文章

  • 人工智能 机器学习 深度学习

    一、人工智能包括机器学习,而机器学习包括深度学习。 人工智能就是算法组成的, 而机器学习就是包括很多算法,机器学习...

  • 机器学习和算法

    机器学习算法 github主页:机器学习和算法 最近以来一直在学习机器学习和算法,然后自己就在不断总结和写笔记,记...

  • 终极算法 by domingos(一)

    第一章 机器学习革命 算法:输入数据和算法,输出结果。 机器学习:输入数据和结果,输出算法。 在机器学习中,知识往...

  • 主成分分析法(PCA)等降维(dimensionality re

    机器学习算法学习路上的伙伴们,早安、午安、晚安,机器学习一些基础算法的初级知识学的差不多啦,跟着《机器学习算法实战...

  • 机器学习框架及算法汇总

    机器学习知识架构汇总 机器学习算法汇总

  • 谁能看懂这个

    机器学习算法盘点:人工神经网络、深度学习 机器学习的算法很多。很多时候困惑人们都是,很多算法是一类算法,而有些算法...

  • meta learning

    想较于之前的机器学习算法,meta learning 是让机器学会学习。传统的机器算法只是希望机器学习到一个函数,...

  • 成为顶尖算法专家需要知道哪些算法?

    摘要: 顶尖的机器学习专家需要的算法,要不要? 机器学习算法简介 有两种方法可以对你现在遇到的所有机器学习算法进行...

  • 机器学习

    1.机器学习算法 2.机器学习框架 3.机器学习应用案例

  • 《机器学习(周志华)》学习笔记(三)

    Q:机器学习中最简单的学习算法是什么? A:最简单的机器学习算法莫过于线性回归算法了。线性回归算法的基本形式如下:...

网友评论

    本文标题:机器学习算法①

    本文链接:https://www.haomeiwen.com/subject/mgyuaxtx.html