参考博客:https://blog.csdn.net/bryant_meng/article/details/81077196
CNN,keras动态学习率参考:https://blog.csdn.net/zzc15806/article/details/79711114
https://blog.csdn.net/Xwei1226/article/details/81297878
https://blog.csdn.net/xjcvip007/article/details/52801216
#-*-coding:utf-8-*-
from __future__ import print_function
import numpy as np
seed=7
np.random.seed(seed)
import time
from keras.callbacks import EarlyStopping
import keras
from keras.utils.vis_utils import plot_model
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.optimizers import SGD,RMSprop,adam
from keras.layers import Conv2D, MaxPooling2D
from keras.wrappers.scikit_learn import KerasClassifier
from PIL import Image
from sklearn.model_selection import GridSearchCV
from keras import backend as K
K.clear_session()
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
from keras.layers.normalization import BatchNormalization
from numpy import *
num_classes = 3
batch_size=64
epochs=50
chanDim=-1
start=time.clock()
path2='./newgray/'
img_rows,img_cols=140,105
imlist=os.listdir(path2)
imlist.sort(key = lambda x:int(x[:-4]))
im1=array(Image.open('./newgray'+'//'+imlist[0]))
m,n=im1.shape[0:2]
imnbr=len(imlist)
immatrix=array([array(Image.open('./newgray'+'//'+im2)).flatten()
for im2 in imlist],'f')
num_samples=size(imlist)
label=np.ones((num_samples,),dtype='int64')
label[0:1800]=0
label[1800:3600]=1
label[3600:]=2
names=['best','general','bad']
data,label=shuffle(immatrix,label,random_state=2)
train_data=[data,label]
#img=immatrix[167].reshape(img_rows,img_cols)
#plt.imshow(img)
#plt.imshow(img,cmap='gray')
print(train_data[0].shape)
print(train_data[1].shape)
(x,y)=(train_data[0],train_data[1])
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=4)
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(16, [6,5],
padding='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(1,2)))
model.add(Dropout(0.5))
model.add(Conv2D(632, [6,5],
padding='valid'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(1,2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(BatchNormalization(axis=chanDim))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.summary()
early_stopping = EarlyStopping(monitor='acc', patience=2,mode='max')
history=model.fit(x_train,y_train,batch_size=batch_size,epochs=epochs,
callbacks=[early_stopping],shuffle=True,verbose=1,validation_split=0.2)
plot_model(model, to_file='model1.png',show_shapes=True)
# Evaluating the model
score=model.evaluate(x_test,y_test,verbose=0)
print('Test Loss:',score[0])
print('Test Accuracy:',score[1])
plt.figure(1)
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epochs')
plt.legend(['test','train'],loc='upper left')
plt.figure(2)
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epochs')
plt.show()
#%%
# Printing the confusion matrix
from sklearn.metrics import classification_report,confusion_matrix
import itertools
Y_pred = model.predict(x_test)
print(Y_pred)
y_pred = np.argmax(Y_pred, axis=1)
print(y_pred)
#y_pred = model.predict_classes(X_test)
#print(y_pred)
target_names = ['class 0(best)', 'class 1(general)', 'class 2(bad)']
print(classification_report(np.argmax(y_test,axis=1), y_pred,target_names=target_names))
print(confusion_matrix(np.argmax(y_test,axis=1), y_pred))
# Plotting the confusion matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix
cnf_matrix = (confusion_matrix(np.argmax(y_test,axis=1), y_pred))
np.set_printoptions(precision=2)
plt.figure()
# Plot non-normalized confusion matrix
plot_confusion_matrix(cnf_matrix, classes=target_names,
title='Confusion matrix')
#plt.figure()
# Plot normalized confusion matrix
#plot_confusion_matrix(cnf_matrix, classes=target_names, normalize=True,
# title='Normalized confusion matrix')
#plt.figure()
plt.show()
end=time.clock()
print('Running time:%s seconds' %(end-start))
网友评论