美文网首页
Longest Palindromic Substring

Longest Palindromic Substring

作者: Qarnet | 来源:发表于2018-01-24 15:27 被阅读0次

    Question:

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000.
    给定一个字符串,找到其最长回文子串

    Examples:

    Input: "babad"
    Output: "bab"
    Note: "aba" is also a valid answer.

    Input: "cbbd"
    Output: "bb"

    Solution:

    方法一

    找到所有子串后,在判断子串是否回文,但是看题目说字符长度为1000,这样的暴力解法的时间复杂度为o(n^3),附上暴力解法的代码,但是会提示 Time Limit Exceeded

    Code:
    class Solution(object):
        def longestPalindrome(self, s):
            """
            :type s: str
            :rtype: str
            """
            Str = ''
            Max = 0
            for length in range(1,len(s)+1):
                for i in range(len(s)-length+1):
                    j = i+length
                    if(self.reversedStr(s[i:j])):
                        if(Max<length):
                            Max = length
                            Str = s[i:j]
              
            return Str
        def reversedStr(self,s):
            for i in range(len(s)):
                if(s[i] != s[len(s)-i-1]):
                    return False
            return True
    
    方法二

    动态规划解法
    时间复杂度为o(n^2)
    具体算法如下:
    首先我们假设有字符串s,子串为s,start为子串s在s上的初始位置,end为子串s`在s上的结束位置
    我们假设s[start:end]回文子串,那么s[start+1,end-1]必定也是回文子串就会存在公式.
    因此我们用dp[start][end] = dp[start+1][end-1] and (s[start]与s[end]是否相等)
    如果子串dp[start+1][end-1]为回文子串并且s[start]==s[end]的时候,说明dp[start][end]也是回文子串
    而s中的单个字符与本身相等的,所以dp[i][i]也是回文子串
    如果s[i]==s[i+1],dp[i][i+1]也是回文字串
    因此我们的代码如下所示:

    Code:
    class Solution(object):
        def longestPalindrome(self, s):
            """
            :type s: str
            :rtype: str
            """
            start = 0
            MaxLength = 0
            dp = [[False for i in range(len(s))] for i in range(len(s))]
            if(len(s)==1):
                return s
            for i in range(len(s)):
                dp[i][i] = True
                if(i<len(s)-1 and s[i] == s[i+1]):
                    dp[i][i+1] = True
                    start = i
                    MaxLength = 2
            for length in range(3,len(s)+1):
                for i in range(len(s)-length+1):
                    j = i+length-1
                    if(s[j]==s[i] and dp[i+1][j-1]):
                        dp[i][j] = True
                        MaxLength = length
                        start = i
            if(MaxLength>=2):
                return s[start:start+MaxLength]
            return s[0]
    

    还有其他解法,比方说用某个字符为中心点往四周拓展看是否回文,时间复杂度为o(n^2),说还有一个(Manacher’s algorithm)时间复杂的o(n),还需要再看看

    相关文章

      网友评论

          本文标题:Longest Palindromic Substring

          本文链接:https://www.haomeiwen.com/subject/miduaxtx.html