美文网首页
Keras_regression

Keras_regression

作者: VaultHunter | 来源:发表于2018-03-16 10:27 被阅读0次
    import numpy as np
    np.random.seed(1337)
    from keras.models import Sequential
    from keras.layers import Dense
    import matplotlib.pyplot as plt
    
    X = np.linspace(-1,1,200)
    np.random.shuffle(X)
    Y = 0.5 * X + 2 + np.random.normal(0,0.05,(200,))
    
    plt.scatter(X,Y)
    plt.show()
    
    
    X_train,Y_train = X[:160],Y[:160]
    X_test,Y_test = X[160:],Y[160:]
    
    model = Sequential()
    model.add(Dense(1, input_dim=1))
    model.compile(loss = 'mse',optimizer = 'sgd')
    
    print('training..........')
    for step in range(1000):
        cost = model.train_on_batch(X_train,Y_train)
        if step % 100 == 0:
            print('train cost:',cost)
            
    print('testing...........')
    cost = model.evaluate(X_test,Y_test,batch_size= 40)
    print('test cost:',cost)
    W,b = model.layers[0].get_weights()
    print('W=',W,'b=',b)
    
    Y_pred =  model.predict(X_test)
    plt.scatter(X_test,Y_test)
    plt.plot(X_test,Y_pred)
    plt.show()
    

    中文文档

    相关文章

      网友评论

          本文标题:Keras_regression

          本文链接:https://www.haomeiwen.com/subject/mijlqftx.html