美文网首页
Java中hashCode和equals相关问题阐述

Java中hashCode和equals相关问题阐述

作者: 宝之家 | 来源:发表于2017-07-27 16:20 被阅读0次

    本文主要针对如下三个问题进行解释:

    • 默认情况下hashCode相同是不是意味着equals方法相等?
    • 默认情况下equals方法相等是不是意味着hashCode相同?
    • 重写equals方法是不是需要重写hashCode方法?为什么?

    默认情况下hashCode相同是不是意味着equals方法相等和问题?equals方法相等是不是意味着hashCode相同?

    之所以将这两个问题放在一起,是因为两个问题可以联系在一起回答,在Object类中的hashCode和equals方法中已经有了该问题的答案

    image.png

    图中红色区域的意思为:如果两个对象根据equals方法判定相等,那么这两个对象的hashCode方法必定是相同的integer的整形值。其中暗含了两层意思:

    1. equals相等的两个对象,其hashCode必定相等
    2. 通过equals判定前,必定有hashCode值比较判断的步骤

    看到这里我们自然疑惑hashCode方法是如何得到某个对象的hash值的,我们再看如下这句话

    image.png

    其中说到hashCode方法一种典型的实现是将对象在堆内的地址通过某种手段转成一个integer整形值,但是该方法是native修饰的,需要通过查阅openjdk的源码得到,查阅相关资料得到真正对应的hashCode生成方法如下

    intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {
      if (UseBiasedLocking) {
        // NOTE: many places throughout the JVM do not expect a safepoint
        // to be taken here, in particular most operations on perm gen
        // objects. However, we only ever bias Java instances and all of
        // the call sites of identity_hash that might revoke biases have
        // been checked to make sure they can handle a safepoint. The
        // added check of the bias pattern is to avoid useless calls to
        // thread-local storage.
        if (obj->mark()->has_bias_pattern()) {
          // Box and unbox the raw reference just in case we cause a STW safepoint.
          Handle hobj (Self, obj) ;
          // Relaxing assertion for bug 6320749.
          assert (Universe::verify_in_progress() ||
                  !SafepointSynchronize::is_at_safepoint(),
                 biases should not be seen by VM thread here);
          BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
          obj = hobj() ;
          assert(!obj->mark()->has_bias_pattern(), biases should be revoked by now);
        }
      }
     
      // hashCode() is a heap mutator ...
      // Relaxing assertion for bug 6320749.
      assert (Universe::verify_in_progress() ||
              !SafepointSynchronize::is_at_safepoint(), invariant) ;
      assert (Universe::verify_in_progress() ||
              Self->is_Java_thread() , invariant) ;
      assert (Universe::verify_in_progress() ||
             ((JavaThread *)Self)->thread_state() != _thread_blocked, invariant) ;
     
      ObjectMonitor* monitor = NULL;
      markOop temp, test;
      intptr_t hash;
      markOop mark = ReadStableMark (obj);
     
      // object should remain ineligible for biased locking
      assert (!mark->has_bias_pattern(), invariant) ;
     
      if (mark->is_neutral()) {
        hash = mark->hash();              // this is a normal header
        if (hash) {                       // if it has hash, just return it
          return hash;
        }
        hash = get_next_hash(Self, obj);  // allocate a new hash code
        temp = mark->copy_set_hash(hash); // merge the hash code into header
        // use (machine word version) atomic operation to install the hash
        test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
        if (test == mark) {
          return hash;
        }
        // If atomic operation failed, we must inflate the header
        // into heavy weight monitor. We could add more code here
        // for fast path, but it does not worth the complexity.
      } else if (mark->has_monitor()) {
        monitor = mark->monitor();
        temp = monitor->header();
        assert (temp->is_neutral(), invariant) ;
        hash = temp->hash();
        if (hash) {
          return hash;
        }
        // Skip to the following code to reduce code size
      } else if (Self->is_lock_owned((address)mark->locker())) {
        temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
        assert (temp->is_neutral(), invariant) ;
        hash = temp->hash();              // by current thread, check if the displaced
        if (hash) {                       // header contains hash code
          return hash;
        }
        // WARNING:
        //   The displaced header is strictly immutable.
        // It can NOT be changed in ANY cases. So we have
        // to inflate the header into heavyweight monitor
        // even the current thread owns the lock. The reason
        // is the BasicLock (stack slot) will be asynchronously
        // read by other threads during the inflate() function.
        // Any change to stack may not propagate to other threads
        // correctly.
      }
     
      // Inflate the monitor to set hash code
      monitor = ObjectSynchronizer::inflate(Self, obj);
      // Load displaced header and check it has hash code
      mark = monitor->header();
      assert (mark->is_neutral(), invariant) ;
      hash = mark->hash();
      if (hash == 0) {
        hash = get_next_hash(Self, obj);
        temp = mark->copy_set_hash(hash); // merge hash code into header
        assert (temp->is_neutral(), invariant) ;
        test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
        if (test != mark) {
          // The only update to the header in the monitor (outside GC)
          // is install the hash code. If someone add new usage of
          // displaced header, please update this code
          hash = test->hash();
          assert (test->is_neutral(), invariant) ;
          assert (hash != 0, Trivial unexpected object/monitor header usage.);
        }
      }
      // We finally get the hash  
      return hash;
    

    重写equals方法是不是需要重写hashCode方法?为什么?

    首先该问题的答案仍然在Object中的equals方法注释中写的很清楚,如下图所示

    image.png

    按红框处的官方解释来说,只要equals方法被重写了就必须重写hashCode方法,此处也解释了“必须”的原因,要维持hashCode方法的contract约定,hashCode方法中申明了相同的对象必须有相同的hash code。
    为了进一步加深对该“必须”的理解,这里又从两个方面举例说明:
    <li> 自己创建一个自定义对象,只重写equals方法而不重写hashCode方法,看看有什么问题
    <li> 从HashMap源码的角度分析一下,如果只重写equals而不重写hashCode有什么问题

    <p> 自己创建一个Person对象,有pname和age字段,如下所示

    public class Person implements Serializable {
        private static final long serialVersionUID = 7592930394427200495L;
    
        private String pname;
        private int age;
    
        public Person() {
    
        }
    
        public Person(String pname, int age) {
            this.pname = pname;
            this.age = age;
        }
    
        public String getPname() {
            return pname;
        }
    
        public void setPname(String pname) {
            this.pname = pname;
        }
    
        public int getAge() {
            return age;
        }
    
        public void setAge(int age) {
            this.age = age;
        }
    
        @Override
        public boolean equals(Object o) {
            if (this == o) return true;
            if (!(o instanceof Person)) return false;
    
            Person person = (Person) o;
    
            if (age != person.age) return false;
            return !(pname != null ? !pname.equals(person.pname) : person.pname != null);
    
        }
    
    //    @Override
    //    public int hashCode() {
    //        int result = pname != null ? pname.hashCode() : 0;
    //        result = 31 * result + age;
    //        return result;
    //    }
    }
    

    <p> 进行测试

    @Test
        public void fun() {
            Person p1 = new Person("lisi", 15);
            Person p2 = new Person("lisi", 15);
            Assert.assertEquals(false, p1.equals(p2));
        }
    

    <p> 结果如下

    image.png

    p1和p2在java堆中肯定分属不同的Person实例对象,其地址必定不相同,但因为我们仅仅重写了equals方法,只对pname和age的值进行了比对从而导致了结果的错误,如果重写了hashCode方法,根据两个实例地址的相关算法进行判断就会避免这个问题

    同样的我们再来分析HashMap中的一段源码再次说明hashCode和equals方法同时重写的重要性,其中的关键点在于put操作时的逻辑

    image.png

    当新元素放入HashMap时,会首先计算出该元素对应放在哪一个Entry链表上(HashMap原理不了解的请查阅相关文档),然后通过和链表上的每一个元素比较,来判断新加入元素是否是重复元素,而判断重复元素的思路就体现了两个方法协同的重要性,首先会判断两个元素的hash值是否相等,再判断两个元素equals是否相等,设想一下,如果没有重写元素的hashCode方法,那么就有可能存在这种可能,两个元素不等,但hash code相等,重写的equals也相等(如Person例中),从而导致错误的覆盖

    相关文章

      网友评论

          本文标题:Java中hashCode和equals相关问题阐述

          本文链接:https://www.haomeiwen.com/subject/miuzkxtx.html