「handler机制--让线程变为“永动机”」这一篇最后提到“线程已经做好了一切准备,就等待着“各种事件“的到来了”。那我们这篇就分别从Message“诞生”,发送Message,收到Message,处理Message,回收Message 这五个过程来介绍Message之旅。(以下分析都是基于android 12代码)
1. Message"诞生"
Message的”诞生“可不是你想象的那样,随便调用下Message的构造方法就可以创建一个Message,Message可是handler机制中”使用量“最大的对象了,如果对Message的创建不加以管控,那随着Message对象的大量创建,必然会涉及到大量Message回收的工作,这回收工作量越来越大越来越频繁,到最后影响的可是系统的运行。因此Message的创建需要
受管控,并且创建了Message缓冲池。
下面通过代码来介绍下创建Message
/** Constructor (but the preferred way to get a Message is to call {@link #obtain() Message.obtain()}).
*/
public Message() {
}
public static Message obtain(Handler h, int what) {
//先调用obtain方法,获取Message
Message m = obtain();
m.target = h;
m.what = what;
return m;
}
public static Message obtain(Handler h, int what, Object obj) {
//先调用obtain方法,获取Message
Message m = obtain();
m.target = h;
m.what = what;
m.obj = obj;
return m;
}
上面只是列举了obtain的几个方法,省略了其他的重载方法(除了参数的区别外,其他都一样)
如上面Message构造方法的官方注释,创建Message最好的方式是调用Message的各种obtain方法
再来看下最核心的obtain方法,如下代码
public static Message obtain() {
synchronized (sPoolSync) {
//sPool是一个对象缓冲池,如果不等与空,从缓冲池中获取
if (sPool != null) {
Message m = sPool;
sPool = m.next;
m.next = null;
m.flags = 0; // clear in-use flag
sPoolSize--;
return m;
}
}
//否则new一个Message
return new Message();
}
obtain方法在创建Message的时候,它的过程如下:
- 若sPool不为null,则从sPool中获取,sPool是Message对象的缓存池,认真看上面代码,sPool并不是一个容器,而是以链表的结构来把Message串起来,Message有一个很重要的属性next,而这个属性才支持了链表这个数据结构
- 若sPool为null,则调用构造方法创建Message
小结
创建Message的方法是调用Message的各种重载obtain方法,它可以控制创建Message的过程,先从sPool对象缓冲池中获取,没有则采取新创建。
那我们就创建一个Message对象,如下代码:
//下面代码位于主线程
//handler处理Message,Looper.getMainLooper()获取的是主线程的Looper对象
Handler handler = new Handler(Looper.getMainLooper()){
@Override
public void handleMessage(@NonNull Message msg) {
super.handleMessage(msg);
if (msg.what == 1 ){
}
}
};
//Message.obtain方法获取一个Message,该方法参数是handler(上面创建的),what值为1
Message msg = Message.obtain(handler, 1);
2. 发送Message
上面一节创建了一个msg对象,那就来看下怎么把它发送到MessageQueue。
发送Message需要调用它的sendToTarget方法,msg.sendToTarget()就可以发送消息,那就从sendToTarget作为入口,来看下发送Message的逻辑
2.1 Message#sendToTarget
public void sendToTarget() {
target.sendMessage(this);
}
2.2 Handler#sendMessage
//msg要发送的Message
public final boolean sendMessage(@NonNull Message msg) {
//delayMillis:0
return sendMessageDelayed(msg, 0);
}
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
//SystemClock.uptimeMillis()获取从开机到这个时刻的毫秒数(不包含系统深度睡眠的时间),因为delayMillis当前值为0,因此uptimeMillis的值就代表当前时刻要发这条Message
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
//queue不存在则抛异常
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
//msg的target设置为当前的Handler对象
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
//若是异步,则把Message设置为异步
if (mAsynchronous) {
msg.setAsynchronous(true);
}
//调用queue的enqueueMessage方法
return queue.enqueueMessage(msg, uptimeMillis);
}
2.3 MessageQueue#enqueueMessage
//when:代表这条msg什么时候发送
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
//进入同步块,下面的代码处于多线程中
synchronized (this) {
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
//MessageQueue处于离开的状态,则直接返回
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
//为了安全,把msg标记为使用状态
msg.markInUse();
//把when值赋值给msg的when属性
msg.when = when;
//MessageQueue中真正把存储Message的是它的mMessages属性,它是一个单向链表,链表上的Message是按when值排序的,越靠近链表头when值越小,p持有的是链表的头
Message p = mMessages;
//如持有MessageQueue的线程处于wait状态则唤醒,否则不做处理
boolean needWake;
//当mMessages没有消息,或者when==0,或者当前发送的Message的时间小于 链表头Message的时间,则把msg加入mMessages并作为它的表头
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
//把msg加入mMessages,并作为表头
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
// mBlocked为true代表处于阻塞状态,p.target == null代表头部消息为屏障消息,当前发送的消息是异步Message,则有必要去唤醒
needWake = mBlocked && p.target == null && msg.isAsynchronous();
//下面的逻辑是根据when值把当前发送的msg插入链表中
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
//若当前要插入的消息不是最早的异步消息,则没必要去 唤醒
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
//需要去唤醒,则调用nativeWake方法唤醒
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
mMessages
在介绍这个方法的逻辑之前,先来说下mMessages,放入MessageQueue的Message是放在mMessages的它是一个链表结构,mMessages指向了链表的头部,Message类有一个next属性指向了下个Message。
mMessages链表是以Message的when值排序的,when值越小越排在前面,when值越小代表这条Message越早发出去。
为啥使用链表来存储Message,主要原因是链表在插入,删除的操作上要快于列表,在MessageQueue中插入,删除Message的操作是很频繁的。
这个方法的逻辑比较长,但所做的事情是比较简单的:
- 如果mMessages没有消息,或者when==0,或者当前发送的Message的时间小于 链表头Message的时间,则把发送的Message放入链表的头部
- 否则,在链表中根据when值查找当前发送的Message放入链表的位置。并且如果 线程处于阻塞状态 并且 头部消息为屏障消息 并且 当前发送的消息是异步Message 并且这个Message是所有异步Message的第一个,则有必要执行唤醒操作
- 如果需要唤醒,则去调用nativeWake方法进行唤醒操作
咱们就来看下唤醒操作,nativeWake方法最终会调用android_os_MessageQueue.cpp的方法
2.4 android_os_MessageQueue.cpp#android_os_MessageQueue_nativeWake
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
nativeMessageQueue->wake();
}
void NativeMessageQueue::wake() {
[2.5]
mLooper->wake();
}
2.5 Looper.cpp#wake
void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
ALOGD("%p ~ wake", this);
#endif
//调用write方法给mWakeEventFd写入一个1
uint64_t inc = 1;
ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd.get(), &inc, sizeof(uint64_t)));
if (nWrite != sizeof(uint64_t)) {
if (errno != EAGAIN) {
LOG_ALWAYS_FATAL("Could not write wake signal to fd %d (returned %zd): %s",
mWakeEventFd.get(), nWrite, strerror(errno));
}
}
}
不敢相信这个方法这么简单,调用write方法给mWakeEventFd写入一个1。这样就可以唤醒了?是不是感觉有点太简单了,关于更多的原理可以看下「handler机制--让线程变为“永动机”」的epoll机制和eventfd机制。
小结
到此发送Message并且唤醒流程就分析完了,下面用一张时序图总结下:
![](https://img.haomeiwen.com/i1504173/7f83decae29a3cd6.png)
3. 收到Message
上面第2步把Message发送到了MessageQueue中,并且调用nativeWake方法去唤醒阻塞的线程,那就来看下,阻塞的线程是怎么被唤醒,并且收到Message的。
「handler机制--让线程变为“永动机”」这篇介绍过 MessageQueue.next--> android_os_MessageQueue_nativePollOnce --> nativeMessageQueue#pollOnce --> Looper#pollOnce --> Looper#pollInner --> epoll_wait,最终由于epoll_wait进入等待状态,导致线程进入等待阻塞状态,既然第2步已经给mWakeEventFd写入了数据,那来看下epoll_wait被唤醒后是怎么来处理唤醒逻辑的
3.1 Looper.cpp#pollInner
int Looper::pollInner(int timeoutMillis) {
省略代码......
struct epoll_event eventItems[EPOLL_MAX_EVENTS];
//因为第2步,调用write方法给mWakeEventFd写数据了,epoll监听到mWakeEventFd上的数据,epoll_wait方法被唤醒,检测到的event会被放入struct epoll_event数据结构中
int eventCount = epoll_wait(mEpollFd.get(), eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
// No longer idling.
mPolling = false;
// Acquire lock.
mLock.lock();
省略代码......
//eventCount大于0
for (int i = 0; i < eventCount; i++) {
int fd = eventItems[i].data.fd;
uint32_t epollEvents = eventItems[i].events;
//因为是往mWakeEventFd写入了数据,因此进入下面的逻辑
if (fd == mWakeEventFd.get()) {
//只关心EPOLLIN类型的事件
if (epollEvents & EPOLLIN) {
//调用awoken方法
awoken();
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
}
} else {
//通过调用addFd方法加入的fd都会放在mRequests中,从mRequests中查找是否有相应的fd请求
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex >= 0) {
int events = 0;
//根据事件类型,对events增加不同的事件值,EVENT_xxx 这些类型的事件是Looper中定义的
if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
//把events和Request放入mResponse中,为下一步分发做准备
pushResponse(events, mRequests.valueAt(requestIndex));
} else {
ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
"no longer registered.", epollEvents, fd);
}
}
}
Done: ;
// Invoke pending message callbacks.
mNextMessageUptime = LLONG_MAX;
//mMessageEnvelopes:是一个包含native层的Message的队列,Message是通过调用Looper的sendMessage/sendMessageDelayed方法发送的。
while (mMessageEnvelopes.size() != 0) {
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
if (messageEnvelope.uptime <= now) {
// Remove the envelope from the list.
// We keep a strong reference to the handler until the call to handleMessage
// finishes. Then we drop it so that the handler can be deleted *before*
// we reacquire our lock.
{ // obtain handler
sp<MessageHandler> handler = messageEnvelope.handler;
Message message = messageEnvelope.message;
mMessageEnvelopes.removeAt(0);
mSendingMessage = true;
mLock.unlock();
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
this, handler.get(), message.what);
#endif
//调用native层的MessageHandler的handleMessage方法把message分发出去
handler->handleMessage(message);
} // release handler
mLock.lock();
mSendingMessage = false;
result = POLL_CALLBACK;
} else {
// The last message left at the head of the queue determines the next wakeup time.
mNextMessageUptime = messageEnvelope.uptime;
break;
}
}
// Release lock.
mLock.unlock();
// Invoke all response callbacks.
//若mResponses的size大于0,则开始分发它的消息
for (size_t i = 0; i < mResponses.size(); i++) {
Response& response = mResponses.editItemAt(i);
if (response.request.ident == POLL_CALLBACK) {
int fd = response.request.fd;
int events = response.events;
void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
this, response.request.callback.get(), fd, events, data);
#endif
// Invoke the callback. Note that the file descriptor may be closed by
// the callback (and potentially even reused) before the function returns so
// we need to be a little careful when removing the file descriptor afterwards.
//调用callback的handleEvent方法把事件发出去
int callbackResult = response.request.callback->handleEvent(fd, events, data);
if (callbackResult == 0) {
removeFd(fd, response.request.seq);
}
// Clear the callback reference in the response structure promptly because we
// will not clear the response vector itself until the next poll.
response.request.callback.clear();
result = POLL_CALLBACK;
}
}
return result;
}
在介绍上面方法的逻辑之前,先来介绍下下面几个属性:
mRequest
mRequest是用来存放Request对象的,那Request来自何处呢?看下面代码
int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ addFd - fd=%d, ident=%d, events=0x%x, callback=%p, data=%p", this, fd, ident,
events, callback.get(), data);
#endif
if (!callback.get()) {
if (! mAllowNonCallbacks) {
ALOGE("Invalid attempt to set NULL callback but not allowed for this looper.");
return -1;
}
if (ident < 0) {
ALOGE("Invalid attempt to set NULL callback with ident < 0.");
return -1;
}
} else {
ident = POLL_CALLBACK;
}
{ // acquire lock
AutoMutex _l(mLock);
//用传递进来的参数初始化request
Request request;
//request的fd存储了fd
request.fd = fd;
request.ident = ident;
request.events = events;
request.seq = mNextRequestSeq++;
//fd上有数据的时候,会调用callback回调
request.callback = callback;
request.data = data;
if (mNextRequestSeq == -1) mNextRequestSeq = 0; // reserve sequence number -1
//根据request来初始化epoll_event
struct epoll_event eventItem;
request.initEventItem(&eventItem);
//若mRequests中不存在fd对应的epoll_event,则下面的逻辑 调用epoll_ctl方法把fd对应的eventItem添加到mEpollFd上,这样就可以通过epoll_wait方法监听fd上面的数据了
ssize_t requestIndex = mRequests.indexOfKey(fd);
if (requestIndex < 0) {
int epollResult = epoll_ctl(mEpollFd.get(), EPOLL_CTL_ADD, fd, &eventItem);
if (epollResult < 0) {
ALOGE("Error adding epoll events for fd %d: %s", fd, strerror(errno));
return -1;
}
把fd,request添加到mRequests中
mRequests.add(fd, request);
} else {
//若mRequests中存在,则替换fd上的eventItem
int epollResult = epoll_ctl(mEpollFd.get(), EPOLL_CTL_MOD, fd, &eventItem);
省略代码......
mRequests.replaceValueAt(requestIndex, request);
}
} // release lock
return 1;
}
上面addFd方法主要做的事情是:
- 根据传递的参数初始化一个Request对象,并且根据Request对象初始化epoll_event对象,再调用epoll_ctl方法把fd及对应的epoll_event对象添加到mEpollFd上,这样mEpollFd就和当前的fd“绑定”在一起,在调用epoll_wait方法的时候,就可以监听当前fd上的数据了。
- 初始化的Request对象,以fd为可以它的值为value添加到mRequests中,为啥要保存在mRequests中?主要目的是当epoll_wait监听到fd上的数据时候,会从mRequest中解析出它对应的Request对象,它存储了callback回调对象,调用callback的handleEvent方法就可以fd,event等作为参数发送出去,epoll机制并没有从fd中读取数据的功能,要读取数据需要在handleEvent方法中自己读取
addFd的主要作用就是: 来辅助以管道或者其他类型管道方式实现线程之间/进程之间通信,把管道创建的其中一个fd通过epoll机制加入到它的“监听队列”,这样就可以在epoll机制中监听fd上的数据从而实现线程之间/进程之间通信
mMessageEnvelopes
mMessageEnvelopes包含了native的Message对象,java层有Message,native层也有Message,它的作用和java层是一样的,实现线程之间的通信。看下相关代码:
//uptime,handler, message作为参数 发送一个消息和java层的是不是很类似
void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler,
const Message& message) {
#if DEBUG_CALLBACKS
ALOGD("%p ~ sendMessageAtTime - uptime=%" PRId64 ", handler=%p, what=%d",
this, uptime, handler.get(), message.what);
#endif
size_t i = 0;
{ // acquire lock
AutoMutex _l(mLock);
//从mMessageEnvelopes中,根据uptime来查找一个当前Message可存放的位置
size_t messageCount = mMessageEnvelopes.size();
while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) {
i += 1;
}
//把messageEnvelope放入mMessageEnvelopes
MessageEnvelope messageEnvelope(uptime, handler, message);
mMessageEnvelopes.insertAt(messageEnvelope, i, 1);
// Optimization: If the Looper is currently sending a message, then we can skip
// the call to wake() because the next thing the Looper will do after processing
// messages is to decide when the next wakeup time should be. In fact, it does
// not even matter whether this code is running on the Looper thread.
if (mSendingMessage) {
return;
}
} // release lock
// Wake the poll loop only when we enqueue a new message at the head.
//如果存放的位置是第一位,则调用wake方法唤醒
if (i == 0) {
wake();
}
}
上面方法所做的事情:从mMessageEnvelopes中,根据uptime来查找一个当前Message可存放的位置,初始化一个MessageEnvelope对象,并把它放入mMessageEnvelopes中;如果存放的位置是第一位,则调用wake方法唤醒
mResponses
该属性主要是与上面mRequests属性相对应的,就是对Request的一个响应。
在介绍完这几个属性后,下面接着pollInner方法的分析,epoll_wait方法监听event事件唤醒后,会依次做下面几件事情:
- 处理epoll监听到的eventItems,依次从eventItems筛选相应的event,如果event的fd是mWakeEventFd,则单独处理;否则从mRequests中查询是否存在event的fd对应的Request,有则封装Response,等待后面的调用。为啥不现在直接处理这些Request而要放在Response中,等候处理呢?应该是基于处理mMessageEnvelopes的优先级高于这个
- 处理native层的Message,若mMessageEnvelopes中有Message,则加锁开始处理mMessageEnvelopes中可以处理的Message,并且调用 handler->handleMessage方法把Message分发出去
- 处理mResponses,若mResponses中存在,则依次调用它对应的request.callback->handleEvent方法,把事件分发出去
到此epoll_wait被唤醒,pollInner方法执行完毕后,依次返回方法调用链的栈顶方法MessageQueue.next方法,那来看下它的执行
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
//被唤醒,开始执行它后面的逻辑
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
//msg指向链表头部
Message msg = mMessages;
//同步屏障Message,这节暂时不讨论下面的逻辑
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
//因为在第2步,发送了一个Message,因此msg不为null
if (msg != null) {
//若当前的时间戳小于msg的when,则代表这个msg还不到发送的时间,再次调整nextPollTimeoutMillis值,调用nativePollOnce方法的时候,告诉它等待nextPollTimeoutMillis这么久的时间
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
//拿到Message了,返回,并设置mBlocked为非阻塞
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
//下面是idle类型Message,不属于咱们这节的介绍,后面会介绍
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
next方法拿到Message后返回给调用它的方法Looper.loopOnce,那就来看下处理Message的过程
4. 处理Message
4.1 Looper#loopOnce
private static boolean loopOnce(final Looper me,
final long ident, final int thresholdOverride) {
//从next方法返回Message
Message msg = me.mQueue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return false;
}
省略代码......
try {
//调用target的dispatchMessage方法把msg分发给Handler,让它开始处理消息
[4.2]
msg.target.dispatchMessage(msg);
if (observer != null) {
observer.messageDispatched(token, msg);
}
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} catch (Exception exception) {
if (observer != null) {
observer.dispatchingThrewException(token, msg, exception);
}
throw exception;
} finally {
ThreadLocalWorkSource.restore(origWorkSource);
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
省略代码......
//回收msg
msg.recycleUnchecked();
return true;
}
4.2 Handler#dispatchMessage
public void dispatchMessage(@NonNull Message msg) {
//如果msg的callback不为null,则直接调用handleCallback方法
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
//调用handleMessage方法把msg发出去
handleMessage(msg);
}
}
loopOnce方法把msg交给Handler的dispatchMessage方法后,Handler根据条件判断调用handleMessage方法把msg交给真正处理者开始处理,咱们在第1步创建的Handler重写了handleMessage,如下
Handler handler = new Handler(Looper.getMainLooper()){
@Override
public void handleMessage(@NonNull Message msg) {
super.handleMessage(msg);
if (msg.what == 1 ){
}
}
};
5. 回收Message
上面处理了Mssage后,会调用msg.recycleUnchecked()方法来回收msg,来看下代码
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.
//清除各种属性的值
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = UID_NONE;
workSourceUid = UID_NONE;
when = 0;
target = null;
callback = null;
data = null;
synchronized (sPoolSync) {
//加入到缓冲池的头部
if (sPoolSize < MAX_POOL_SIZE) {
next = sPool;
sPool = this;
sPoolSize++;
}
}
}
总结
到此Message从“诞生”,发送,收到,处理,回收 这五个过程就分析完毕。但是Message之旅却没有结束,它还会不断的重复上面的过程,因为Looper.loop方法它是一个死循环,它还会不断的从MessageQueue中取Message处理Message。
也正因为Looper不断的执行着取消息/等待消息,处理消息这样的循环,ActivityThread的main方法才会不断的能循环起来,最终一个app才能运行起来。
阻塞/唤醒本质
MessageQueue中阻塞/唤醒的本质,就是epoll,eventfd机制。eventfd创建返回的fd会通过epoll_ctl方法进行添加,这样epoll就可以监听fd上的数据。当在其他线程中给MessageQueue添加Message后,若需要唤醒,则会最终给eventfd返回的fd上write一个int值,epoll_wait方法因为fd上有数据导致它被唤醒。
网友评论