美文网首页
特征重要性分析及特征选择技巧

特征重要性分析及特征选择技巧

作者: lzjngu | 来源:发表于2024-09-10 16:53 被阅读0次

    一、Python中进行特征重要性分析的9个常用方法

    参考学习:机器学习 - 特征选择:11 种特征选择策略总结 - deephub - SegmentFault 思否

    特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。

    为什么特征重要性分析很重要?
    如果有一个包含数十个甚至数百个特征的数据集,每个特征都可能对你的机器学习模型的性能有所贡献。但是并不是所有的特征都是一样的。有些可能是冗余的或不相关的,这会增加建模的复杂性并可能导致过拟合。

    特征重要性分析可以识别并关注最具信息量的特征,从而带来以下几个优势:

    • 改进的模型性能
    • 减少过度拟合
    • 更快的训练和推理
    • 增强的可解释性

    下面我们深入了解在Python中的一些特性重要性分析的方法。

    特征重要性分析方法

    1. 排列重要性 PermutationImportance
      该方法会随机排列每个特征的值,然后监控模型性能下降的程度。如果获得了更大的下降意味着特征更重要
    from sklearn.datasets import load_breast_cancer
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.inspection import permutation_importance 
     from sklearn.model_selection import train_test_split
     import matplotlib.pyplot as plt
     
     cancer = load_breast_cancer()
     
     X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1)
     
     rf = RandomForestClassifier(n_estimators=100, random_state=1)
     rf.fit(X_train, y_train) 
     
     baseline = rf.score(X_test, y_test)
     result = permutation_importance(rf, X_test, y_test, n_repeats=10, random_state=1, scoring='accuracy')
     
     importances = result.importances_mean
     
     # Visualize permutation importances
     plt.bar(range(len(importances)), importances)
     plt.xlabel('Feature Index')
     plt.ylabel('Permutation Importance')
     plt.show()
    
    1. 内置特征重要性(coef_或feature_importances_)
      一些模型,如线性回归和随机森林,可以直接输出特征重要性分数。这些显示了每个特征对最终预测的贡献。
    from sklearn.datasets import load_breast_cancer
     from sklearn.ensemble import RandomForestClassifier
     
     X, y = load_breast_cancer(return_X_y=True)
     
     rf = RandomForestClassifier(n_estimators=100, random_state=1)
     rf.fit(X, y)
     
     importances = rf.feature_importances_
     
     # Plot importances
     plt.bar(range(X.shape[1]), importances)
     plt.xlabel('Feature Index') 
     plt.ylabel('Feature Importance')
     plt.show()
    
    1. Leave-one-out
      迭代地每次删除一个特征并评估准确性。
    from sklearn.datasets import load_breast_cancer
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.metrics import accuracy_score
     import matplotlib.pyplot as plt
     import numpy as np
     
     # Load sample data
     X, y = load_breast_cancer(return_X_y=True)
     
     # Split data into train and test sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1) 
     
     # Train a random forest model
     rf = RandomForestClassifier(n_estimators=100, random_state=1)
     rf.fit(X_train, y_train)
     
     # Get baseline accuracy on test data
     base_acc = accuracy_score(y_test, rf.predict(X_test))
     
     # Initialize empty list to store importances
     importances = []
     
     # Iterate over all columns and remove one at a time
     for i in range(X_train.shape[1]):
         X_temp = np.delete(X_train, i, axis=1)
         rf.fit(X_temp, y_train)
         acc = accuracy_score(y_test, rf.predict(np.delete(X_test, i, axis=1)))
         importances.append(base_acc - acc)
         
     # Plot importance scores    
     plt.bar(range(len(importances)), importances)
     plt.show()
    
    1. 相关性分析
      计算各特征与目标变量之间的相关性。相关性越高的特征越重要。
    import pandas as pd
     from sklearn.datasets import load_breast_cancer
     
     X, y = load_breast_cancer(return_X_y=True)
     df = pd.DataFrame(X, columns=range(30))
     df['y'] = y
     
     correlations = df.corrwith(df.y).abs()
     correlations.sort_values(ascending=False, inplace=True)
     
     correlations.plot.bar()
    
    1. 递归特征消除 Recursive Feature Elimination
      递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。
    from sklearn.ensemble import RandomForestClassifier
     from sklearn.feature_selection import RFE
     import pandas as pd
     from sklearn.datasets import load_breast_cancer
     import matplotlib.pyplot as plt
     
     X, y = load_breast_cancer(return_X_y=True)
     df = pd.DataFrame(X, columns=range(30))
     df['y'] = y
     
     rf = RandomForestClassifier()
     
     rfe = RFE(rf, n_features_to_select=10) 
     rfe.fit(X, y)
     
     print(rfe.ranking_)
    
    1. XGBoost特性重要
      计算一个特性用于跨所有树拆分数据的次数。更多的分裂意味着更重要。
    import xgboost as xgb
     import pandas as pd
     from sklearn.datasets import load_breast_cancer
     import matplotlib.pyplot as plt
     
     X, y = load_breast_cancer(return_X_y=True)
     df = pd.DataFrame(X, columns=range(30))
     df['y'] = y
     
     model = xgb.XGBClassifier()
     model.fit(X, y)
     
     importances = model.feature_importances_
     importances = pd.Series(importances, index=range(X.shape[1])) 
     importances.plot.bar()
    
    1. 主成分分析 PCA
      对特征进行主成分分析,并查看每个主成分的解释方差比。在前几个组件上具有较高负载的特性更为重要。
    from sklearn.decomposition import PCA
     import pandas as pd
     from sklearn.datasets import load_breast_cancer
     import matplotlib.pyplot as plt
     
     X, y = load_breast_cancer(return_X_y=True)
     df = pd.DataFrame(X, columns=range(30))
     df['y'] = y
     
     pca = PCA()
     pca.fit(X)
     
     plt.bar(range(pca.n_components_), pca.explained_variance_ratio_) 
     plt.xlabel('PCA components')
     plt.ylabel('Explained Variance')
    
    1. 方差分析 ANOVA
      使用f_classif()获得每个特征的方差分析f值。f值越高,表明特征与目标的相关性越强。
    from sklearn.feature_selection import f_classif
     import pandas as pd
     from sklearn.datasets import load_breast_cancer
     import matplotlib.pyplot as plt
     
     X, y = load_breast_cancer(return_X_y=True)
     df = pd.DataFrame(X, columns=range(30))
     df['y'] = y
     
     fval = f_classif(X, y)
     fval = pd.Series(fval[0], index=range(X.shape[1]))
     fval.plot.bar()
    
    1. 卡方检验
      使用chi2()获得每个特征的卡方统计信息。得分越高的特征越有可能独立于目标。
     from sklearn.feature_selection import chi2
     import pandas as pd
     from sklearn.datasets import load_breast_cancer
     import matplotlib.pyplot as plt
     
     X, y = load_breast_cancer(return_X_y=True)
     df = pd.DataFrame(X, columns=range(30))
     df['y'] = y
     
     chi_scores = chi2(X, y)
     chi_scores = pd.Series(chi_scores[0], index=range(X.shape[1]))
     chi_scores.plot.bar()
    

    为什么不同的方法会检测到不同的特征?
    不同的特征重要性方法有时可以识别出不同的特征是最重要的,这是因为:

    1. 他们用不同的方式衡量重要性:
      有的使用不同特特征进行预测,监控精度下降。
      像XGBOOST或者回归模型使用内置重要性来进行特征的重要性排列,而PCA着眼于方差解释。

    2. 不同模型有不同模型的方法:
      线性模型倾向于线性关系、树模型倾向于接近根的特征

    3. 交互作用:
      有的方法可以获取特征之间的相互左右,而有一些则不行,这就会导致结果的差异

    4. 不稳定:
      使用不同的数据子集,重要性值可能在同一方法的不同运行中有所不同,这是因为数据差异决定的

    5. Hyperparameters:
      通过调整超参数,如PCA组件或树深度,也会影响结果

    所以不同的假设、偏差、数据处理和方法的可变性意味着它们并不总是在最重要的特征上保持一致。

    选择特征重要性分析方法的一些最佳实践

    • 尝试多种方法以获得更健壮的视图
    • 聚合结果的集成方法
    • 更多地关注相对顺序,而不是绝对值
    • 差异并不一定意味着有问题,检查差异的原因会对数据和模型有更深入的了解

    二、精简模型,提升效能:线性回归中的特征选择技巧

    在本文中,我们将探讨各种特征选择方法和技术,用以在保持模型评分可接受的情况下减少特征数量。通过减少噪声和冗余信息,模型可以更快地处理,并减少复杂性。

    我们将使用所有特征作为基础模型。然后将执行各种特征选择技术,以确定保留和删除的最佳特征,同时不显著牺牲评分(R2 分数)。使用的方法包括:

    • 相关性矩阵
    • 检查方差膨胀因子(VIF)
    • Lasso作为特征选择方法
    • Select K-Best(f_regression 和 mutual_info_regression)
    • 递归特征消除(RFE)
    • 顺序前向/后向特征选择

    数据集
    我们将从汽车数据集开始,该数据集包含七个特征,并将“mpg”(每加仑行驶英里数)列设置为我们的目标变量。

    import pandas as pd
     pd.set_option('display.max_colwidth', None)  # Show full content of each column
     
     url = "https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data"
     column_names = ["mpg", "cylinders", "displacement", "horsepower", "weight", "acceleration", "model year", "origin", "car name"]
     df = pd.read_csv(url, names=column_names, delim_whitespace=True, na_values='?')
     
     # drop null
     df = df.dropna()
     df = df.drop(columns='car name')
     print(df.shape)
     df.head()
    

    数据集还需要做一些预处理,我们先处理一下异常值

    # Function to count outliers in each column
     def count_outliers(df):
         outlier_counts = {}
         for col in df.columns:
             if df[col].dtype != 'object':  # Exclude non-numeric columns
                 Q1 = df[col].quantile(0.25)
                 Q3 = df[col].quantile(0.75)
                 IQR = Q3 - Q1
                 lower_bound = Q1 - 1.5 * IQR
                 upper_bound = Q3 + 1.5 * IQR
                 lower_bound_outliers = df[df[col] < lower_bound]
                 upper_bound_outliers = df[df[col] > upper_bound]
                 total_outliers = len(lower_bound_outliers) + len(upper_bound_outliers)
                 outlier_counts[col] = total_outliers
         return outlier_counts
     
     count_outliers(df)
    

    “horsepower”和“acceleration”有几个异常值。

    import numpy as np
     import warnings
     warnings.filterwarnings("ignore")
     
     def replace_outliers_with_mean(df):
         for col in df.columns:
             if df[col].dtype != 'object':  # Exclude non-numeric columns
                 Q1 = df[col].quantile(0.25)
                 Q3 = df[col].quantile(0.75)
                 IQR = Q3 - Q1
                 lower_bound = Q1 - 1.5 * IQR
                 upper_bound = Q3 + 1.5 * IQR
                 
                 # Identify outliers
                 lower_bound_outliers = df[col] < lower_bound
                 upper_bound_outliers = df[col] > upper_bound
                 
                 # Replace outliers with the column mean
                 col_mean = df[col].mean()
                 df[col][lower_bound_outliers | upper_bound_outliers] = col_mean
         
         return df
     df = replace_outliers_with_mean(df)
     count_outliers(df) # run multiple times according to desired result (zero outliers)
    

    这样异常值就没有了

    检验相关矩阵
    通过查看相关矩阵,我们可以明确哪些特征与目标变量(如每加仑行驶英里数)有强相关性,这有助于预测。同时,这也帮助我们识别那些相互之间关联度高的特征,可能需要从模型中移除一些以避免多重共线性,从而改善模型的性能和准确性。

    # Correlation Matrix
     import matplotlib.pyplot as plt
     import seaborn as sns
     
     ax2= plt.figure(figsize=(8,5))
     ax2=sns.heatmap(df.corr(), annot=True, fmt='.3', cmap='RdBu_r')
     plt.title('Features Heatmap')
     ax2=plt.show()
    

    相关性矩阵表明,cylinders, displacement, horsepower, weight与我们的目标变量(MPG)呈强烈负相关,而车型年份和产地则显示出轻微的正相关。

    这有助于我们识别那些对目标变量影响较大的特征,从而在特征选择时做出更明智的决策。

    我们先做一个全特征的基础模型:

     from sklearn.model_selection import train_test_split
     from sklearn.preprocessing import StandardScaler
     from sklearn.linear_model import LinearRegression
     y = df['mpg']
     # Select predictor variables
     X_base = df.drop(columns=['mpg'])
     # Linear regression function
     def train_and_evaluate_linear_regression(X, y, test_size=0.3, random_state=42):
         # Split the dataset into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
     
         # Normalize the features
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
     
         # Initialize and fit the Linear Regression model
         lr = LinearRegression()
         lr.fit(X_train, y_train)
     
         # Evaluate the model
         train_score = lr.score(X_train, y_train)
         test_score = lr.score(X_test, y_test)
     
         return train_score, test_score
    
     train_and_evaluate_linear_regression(X_base,y)
    

    这个基础模型,包含所有七个选定的特征,输出的训练分数为0.845,测试分数为0.823。现在,让我们看看是否能在保持或甚至提高这个分数的同时,减少特征的数量。

    方差膨胀因子(VIF)

    VIF 表示特定特征与数据集中其他特征的相关程度。高 VIF 值表明该特征具有高度的多重共线性,可能是冗余的。通过分析 VIF,我们可以识别并考虑从模型中移除那些可能对模型预测能力影响不大的冗余特征,从而优化模型的性能和准确性。

    from statsmodels.stats.outliers_influence import variance_inflation_factor
     #  VIF Score fucntion
     def standardize_and_calculate_vif(df):
         # Standardize the features
         scaler = StandardScaler()
         df_standardized = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
         
         # Calculate VIF
         vif = pd.DataFrame()
         vif['features'] = df_standardized.columns
         vif['VIF_Values'] = [variance_inflation_factor(df_standardized.values, i) for i in range(df_standardized.shape[1])]
         
         # Sort by VIF_Values in descending order
         vif = vif.sort_values(by='VIF_Values', ascending=False).reset_index(drop=True)
         
         return vif
     
     standardize_and_calculate_vif(df.drop(columns='mpg'))
    

    具有高 VIF 值的特征通常是改善模型准确性的候选特征,可考虑移除。通过减少这些特征,可以降低模型的复杂性,提高其泛化能力,在不牺牲模型性能的前提下,使模型更加简洁有效。

    # seleced Features according to VIF values
     X_vif = df[[
         'model year',
         'origin', 
         'acceleration',    
         'horsepower',
         'weight',
     #     'cylinders', # removed
     #     'displacement', # removed
     ]]
    

    继续调用上面我们写好的训练函数

    train_and_evaluate_linear_regression(X_vif,y)
    

    可以看到训练集分数差别不到,而测试集则有一些增长,说明我们去掉特征后模型的鲁棒性(泛化)得到了提高

    Lasso作为特征选择
    Lasso回归通常用于正则化,以防止过拟合,这种情况下的模型可能在训练数据上得分很高,但在未见过的测试数据上表现不佳。Lasso还可以作为一种特征选择技术,通过将系数缩减至零,帮助识别最重要的预测变量。这种方法不仅能有效减少模型中的特征数量,还能帮助我们集中关注那些对目标变量有实质性影响的特征。

    from sklearn.linear_model import Lasso
     from sklearn.metrics import r2_score
     import matplotlib.pyplot as plt
     # codes Plot the coefficients
     y = df['mpg']
     # Select predictor variables
     X = df.drop(columns=['mpg'])
     
     
     # Split the dataset into training and testing sets
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
     
     # Initialize and fit the Lasso model
     lasso = Lasso(alpha=0.1)
     lasso.fit(X_train, y_train)
     
     # Get the coefficients of the features
     coefficients = lasso.coef_
     
     # Plot the coefficients
     plt.figure(figsize=(7, 3))
     plt.bar(X.columns, coefficients)
     plt.xlabel('Features')
     plt.ylabel('Coefficient Value')
     plt.title('Feature Coefficients using Lasso Regression')
     plt.xticks(rotation=20)
     
     plt.tight_layout()
     plt.show()
    

    我们把最小的weight和displacement去除

    # seleced Features according to lasso coeffiennt value
     X_lasso = df[[
         'model year',
         'origin', 
         'acceleration',    
         'horsepower',
     #     'weight', # removed
         'cylinders', 
     #     'displacement', # removed
     ]]
    
    train_and_evaluate_linear_regression(X_lasso,y)
    

    可以看到效果并不是很理想,这是因为Lasso没有考虑到多重共线性的问题。

    Select K-Best
    Select K-Best有两种方法
    1. f_regression
    使用f_regression进行特征选择时,方法会计算每个特征与目标变量之间的相关性程度,并通过F统计量来衡量这种关联的强度。这种方法特别适合于处理连续的特征和目标变量,能够有效地识别出对预测目标变量最有用的特征。选择F统计值最高的K个特征,可以帮助构建一个既简洁又有效的模型。

    from sklearn.feature_selection import SelectKBest, f_regression
     # all features
     X = df[[
         'model year',
         'origin',
         'acceleration',    
         'horsepower',
         'weight',
         'cylinders',
         'displacement',
     ]]
     # K best scoring function
     def K_best_score_list(score_func):
         
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
         
         # normalize
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
     
         selector = SelectKBest(score_func, k='all')
         x_train_kbest = selector.fit_transform(X_train, y_train)
         x_test_kbest = selector.transform(X_test)
     
     
         feature_scores = pd.DataFrame({'Feature': X.columns,
                                    'Score': selector.scores_,
                                    'p-Value': selector.pvalues_})
     
         feature_scores = feature_scores.sort_values(by='Score', ascending=False)
         return feature_scores
    
    K_best_score_list(f_regression)
    

    得分高表明该特征与目标变量高度相关

    # function to evaluate N number of features on R2 score. The features will be selected according to F-score
     def evaluate_features(X, y, score_func):
         
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
         
         # normalize
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
         
         f_regression_list = []
         selected_features_list = []
     
         for k in range(1, len(X.columns) + 1):
             selector = SelectKBest(score_func, k=k)
             x_train_kbest = selector.fit_transform(X_train, y_train)
             x_test_kbest = selector.transform(X_test)
             
             lr = LinearRegression()
             lr.fit(x_train_kbest, y_train)
             y_preds_kbest = lr.predict(x_test_kbest)
             
             # Calculate the r2_score as an example of performance evaluation
             r2_score_kbest = lr.score(x_test_kbest, y_test)
             
             f_regression_list.append(r2_score_kbest)
             
             # Get selected feature names
             selected_feature_mask = selector.get_support()
             selected_features = X.columns[selected_feature_mask].tolist()
             selected_features_list.append(selected_features)
     
         x = np.arange(1, len(X.columns) + 1)
         result_df = pd.DataFrame({'k': x, 'r2_score_test_data': f_regression_list, 'selected_features': selected_features_list})
     
         return result_df
    

    评估f_regression特征在R2上的得分

    evaluate_features(X, y, f_regression)
    

    2. mutual_info_regression
    使用互信息回归(mutual_info_regression)进行特征选择时,该方法会评估每个特征与目标变量之间的信息共享量。互信息得分高意味着特征与目标变量之间的关系更为密切,这种特征对于预测目标变量非常重要。通过选择互信息得分最高的K个特征,我们可以确保模型包含最有影响力的特征,从而提高模型的预测能力和准确性。

     from sklearn.feature_selection import mutual_info_regression
     K_best_score_list(mutual_info_regression)
    
    evaluate_features(X,y, mutual_info_regression)
    

    递归特征消除(RFE)
    递归特征消除(RFE)通过迭代方式从模型中去除较不重要的特征,评估这些特征对模型性能的影响。它通常依赖于模型系数或特征重要性等指标来决定每次迭代中应去除哪些特征。这一迭代过程持续进行,直到剩下所需数量的特征,确保最终模型中仅保留最相关的预测因子。这种方法有助于优化模型的结构,确保模型的效率和准确性。

    from sklearn.feature_selection import RFE
     # all features
     X = df[[
         'cylinders',
         'weight',
         'model year',
         'displacement',
         'acceleration',
         'horsepower',
         'origin'
     ]]
     # function evaluate_rfe_features(X, y)
     def evaluate_rfe_features(X, y):
         
         
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
         
         # normalize
         scaler = StandardScaler()
         X_train = scaler.fit_transform(X_train)
         X_test = scaler.transform(X_test)
         
         r2_score_list = []
         selected_features_list = []
     
         for k in range(1, len(X.columns) + 1):
             lr = LinearRegression()
             rfe = RFE(estimator=lr, n_features_to_select=k)
             x_train_rfe = rfe.fit_transform(X_train, y_train)
             x_test_rfe = rfe.transform(X_test)
             
             lr.fit(x_train_rfe, y_train)
     #         y_preds_rfe = lr.predict(x_test_rfe)
             
             # Calculate the r2_score as an example of performance evaluation
             r2_score_rfe = lr.score(x_test_rfe, y_test)
             
             r2_score_list.append(r2_score_rfe)
             
             # Get selected feature names
             selected_feature_mask = rfe.get_support()
             selected_features = X.columns[selected_feature_mask].tolist()
             selected_features_list.append(selected_features)
     
         x = np.arange(1, len(X.columns) + 1)
         result_df = pd.DataFrame({'k': x, 'r2_score': r2_score_list, 'selected_features': selected_features_list})
     
         return result_df
    
    evaluate_rfe_features(X, y)
    

    顺序前向和后向选择

    • 顺序前向选择(SFS):从一个空的特征集开始,逐步一次添加一个特征到模型中,每一步都选择能最大提高模型性能的特征。
    • 顺序后向选择(SBS):从包含所有特征的模型开始,每一步去除一个特征,选择其移除对模型性能影响最小的,直到满足停止标准为止。

    这两种方法都是通过迭代的方式精细调整特征集,以达到最佳的模型性能。顺序前向选择适用于从少量特征开始逐步构建模型,而顺序后向选择则适用于从一个全特征模型开始逐步简化。这两种方法都能有效地帮助确定哪些特征对预测目标变量最为重要,从而使得模型既精简又有效。

    from mlxtend.feature_selection import SequentialFeatureSelector as SFS
     from sklearn.metrics import r2_score
     def feature_selection_with_sfs_sbs(X, y, test_size=0.3, random_state=42, forward=True, floating=False, scoring='r2', cv=5):
         # List of feature names
         feature_names = X.columns.tolist()
     
         # Splitting the dataset into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state)
     
         # Standardize the data (recommended for models like linear regression)
         scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
     
         # Initialize lists to store results
         selected_features = []
         r2_scores = []
     
         # Iterate over different numbers of features
         for k in range(1, X.shape[1] + 1):  # Iterate from 1 to total number of features
             # Initialize the Sequential Feature Selector
             sfs = SFS(LinearRegression(),
                       k_features=k,
                       forward=forward,
                       floating=floating,
                       scoring=scoring,  # Use specified scoring for evaluation
                       cv=cv)
             
             # Fit the Sequential Feature Selector to the training data
             sfs.fit(X_train_scaled, y_train)
             
             # Transform the data to only include the selected features
             X_train_selected = sfs.transform(X_train_scaled)
             X_test_selected = sfs.transform(X_test_scaled)
             
             # Train a new model using only the selected features
             model = LinearRegression()
             model.fit(X_train_selected, y_train)
             
             # Evaluate the model on the test set using R-squared score
             y_pred = model.predict(X_test_selected)
             r2 = r2_score(y_test, y_pred)
             
             # Store results
             selected_features.append([feature_names[i] for i in sfs.k_feature_idx_])
             r2_scores.append(r2)
             
         # Create a DataFrame to store the results
         results_df = pd.DataFrame({
             'Number of Features': list(range(1, X.shape[1] + 1)),
             'Selected Features': selected_features,
             'R-squared Score': r2_scores
         })
         
         return results_df
    

    顺序前向选择

    feature_selection_with_sfs_sbs(X,y,
                                   forward = True,
                                   scoring = 'r2',
                                   cv = 0
                                   )
    

    顺序后向选择

    feature_selection_with_sfs_sbs(X,y,
                                   forward = False,
                                   scoring = 'r2',
                                   cv = 0
                                   )
    

    通过前向和后向序列特征选择,我们确定了最优特征。

    总结
    递归特征消除(RFE)、顺序前向选择(SFFS)、和顺序后向选择(SBFS)都表明,‘weight’、‘model year’和‘horsepower’是最重要的特征。仅使用这三个特征,我们就能获得可靠的 R² 分数0.823,与使用七个特征的基础模型相比,其 R² 分数也是0.823。(这些 R² 分数是从未在训练期间使用过的测试数据中获得的。)

    这表明通过精确的特征选择,我们能够简化模型而不损失性能,从而提高模型的效率和可解释性。通过减少特征的数量,我们还能减少模型训练和预测所需的计算资源,从而在保持预测质量的同时,提高计算效率。

    相关文章

      网友评论

          本文标题:特征重要性分析及特征选择技巧

          本文链接:https://www.haomeiwen.com/subject/mjruljtx.html