美文网首页
Chapter 04 神经网络的学习

Chapter 04 神经网络的学习

作者: 蜜糖_7474 | 来源:发表于2019-02-27 18:46 被阅读0次

    均方误 与交叉熵误差

    def mean_squared_error(y,t):
        return 0.5*np.sum((y-t)**2)
    
    def cross_entropy_error(y,t):  #t为真实值,y为预测值
        delta=1e-7
        return -np.sum(t*np.log(y+delta))
    
    t = np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0])
    y1 = np.array([0.1, 0.05, 0.6, 0.0, 0.05, 0.1, 0.0, 0.1, 0.0, 0.0])
    y2 = np.array([0.1, 0.05, 0.1, 0.0, 0.05, 0.1, 0.0, 0.6, 0.0, 0.0])
    print(mean_squared_error(t,y1))
    print(mean_squared_error(t,y2))
    print(cross_entropy_error(y1,t))
    print(cross_entropy_error(y2,t))
    

    0.09750000000000003
    0.5975
    0.510825457099338
    2.302584092994546

    mini-batch学习

    (x_train, t_train), (x_test, t_test) = load_mnist(
        normalize=True, one_hot_label=True)
    train_size = x_train.shape[0]
    batch_size = 10
    batch_mask = np.random.choice(train_size, batch_size)  #从0-59999中随机抽出10个
    x_batch = x_train[batch_mask]
    t_batch = t_train[batch_mask]
    

    mini-batch版交叉熵误差的实现

    #训练数据是one-hot形式
    def cross_entropy_error(y, t):
        if y.ndim == 1:
            t = t.reshape(1, t.size)
            y = y.reshape(1, t.size)
        else:
            batch_size = y.shape[0]
            return -np.sum(t * np.log(y + 1e-7)) / batch_size
    
    #训练数据不是one-hot形式
    #def cross_entropy_error(y, t):
    #    if y.ndim == 1:
    #        t = t.reshape(1, t.size)
    #        y = y.reshape(1, y.size)
    #    batch_size = y.shape[0]
    #    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
    

    导数的计算

    def numerical_diff(f, x):
        h = 1e-4
        return (f(x + h) - f(x - h)) / (2 * h)
    
    def square(x):
        return x * x
    
    func = square
    print(numerical_diff(func, 2))
    

    4.000000000004

    定义函数f(x_0,x_1)=x_0^2+x_1^2

    def function_2(x):
        return x[0]**2+x[1]**2
    

    求f在x_0=3,x_1=4时的偏导数

    def function_tmp1(x0):
        return x0 * x0 + 4**2
    
    def function_tmp2(x1):
        return x1 * x1 + 3**2
    
    print(numerical_diff(function_tmp1, 3))
    print(numerical_diff(function_tmp2, 4))
    

    6.00000000000378
    7.999999999999119

    由全部变量的偏导数汇总而成的向量称为梯度

    def numerical_gradient(f, x):
        h = 1e-4
        grad = np.zeros_like(x)  #存放结果
        for idx in range(x.size):
            tmp_val = x[idx]
            x[idx] = tmp_val + h
            fxh1 = f(x)
            x[idx] = tmp_val - h
            fxh2 = f(x)
            grad[idx] = (fxh1 - fxh2) / (2 * h)
            x[idx] = tmp_val
        return grad
    
    print(numerical_gradient(function_2, np.array([0.0, 2.0])))
    

    [0. 4.]

    梯度下降

    def gradient_descent(f,init_x,lr=0.01,step_num=100):
        x=init_x
        for i in range(step_num):
            grad=numerical_gradient(f,x)
            x-=lr*grad
        return x
    
    init_x=np.array([2.0,3.0])
    print(gradient_descent(function_2,init_x,lr=0.1))
    print(gradient_descent(function_2,init_x,lr=10))
    

    [4.07407195e-10 6.11110793e-10]
    [-2.39906967e+12 -2.76179331e+12]

    神经网络的梯度

    def softmax(x):
        if x.ndim == 2:
            x = x.T
            x = x - np.max(x, axis=0)
            y = np.exp(x) / np.sum(np.exp(x), axis=0)
            return y.T
    
        x = x - np.max(x)  # 溢出对策
        return np.exp(x) / np.sum(np.exp(x))
    
    
    def cross_entropy_error(y, t):
        if y.ndim == 1:
            t = t.reshape(1, t.size)
            y = y.reshape(1, y.size)
    
        # 监督数据是one-hot-vector的情况下,转换为正确解标签的索引
        if t.size == y.size:
            t = t.argmax(axis=1)
    
        batch_size = y.shape[0]
        return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size
    
    
    class simpleNet:
        def __init__(self):
            self.W = np.random.randn(2, 3)  #高斯分布进行初始化
    
        def predict(self, x):
            return np.dot(x, self.W)
    
        def loss(self, x, t):
            z = self.predict(x)
            y = softmax(z)
            loss = cross_entropy_error(y, t)
            return loss
    
    net = simpleNet()
    print(net.W)
    x = np.array([0.6, 0.9])
    p = net.predict(x)
    print(p)
    t = np.array([0, 0, 1])
    print(net.loss(x, t))
    

    [[ 0.92716354 -0.14222582 0.29493579]
    [-1.09513484 -0.03646633 1.0450259 ]]
    [-0.42932323 -0.11815519 1.11748478]
    0.4078456178864742

    写一个2 层神经网络的类

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))
    
    def numerical_gradient(f, x):
        h = 1e-4  # 0.0001
        grad = np.zeros_like(x)
    
        it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite'])
        while not it.finished:
            idx = it.multi_index
            tmp_val = x[idx]
            x[idx] = float(tmp_val) + h
            fxh1 = f(x)  # f(x+h)
    
            x[idx] = tmp_val - h
            fxh2 = f(x)  # f(x-h)
            grad[idx] = (fxh1 - fxh2) / (2 * h)
    
            x[idx] = tmp_val  # 还原值
            it.iternext()
    
        return grad
    
    class TwoLayerNet:
        def __init__(self,
                     input_size,
                     hidden_size,
                     output_size,
                     weight_init_std=0.01):
            self.params = {}
            self.params['W1'] = weight_init_std * np.random.randn(
                input_size, hidden_size)
            self.params['b1'] = np.zeros(hidden_size)
            self.params['W2'] = weight_init_std * np.random.randn(
                hidden_size, output_size)
            self.params['b2'] = np.zeros(output_size)
    
        def predict(self, x):
            W1, W2 = self.params['W1'], self.params['W2']
            b1, b2 = self.params['b1'], self.params['b2']
            a1 = np.dot(x, W1) + b1
            z1 = sigmoid(a1)
            a2 = np.dot(z1, W2) + b2
            y = softmax(a2)
            return y
    
        def loss(self, x, t):
            y = self.predict(x)
            return cross_entropy_error(y, t)
    
        def accurary(self, x, t):
            y = self.predict(x)
            y = np.argmax(y, axis=1)
            t = np.argmax(t, axis=1)
            accurary = np.sum(y == t) / float(x.shape[0])
            return accurary
    
        def numerical_gradient(self, x, t):
            loss_W = lambda W: self.loss(x, t)
            grads = {}
            grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
            grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
            grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
            grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
            return grads
    
    net=TwoLayerNet(input_size=784,hidden_size=100,output_size=10)
    x=np.random.rand(100,784)
    y=net.predict(x)
    t=np.random.rand(100,10)
    print(net.accurary(x,t))
    

    0.1

    mini-batch的实现

    (x_train, t_train), (x_test, t_test) =  load_mnist(normalize=True, one_hot_label = True)
    
    train_loss_list = []
    train_acc_list = []
    test_acc_list = []
    
    # 超参数
    iters_num = 10000
    train_size = x_train.shape[0]
    batch_size = 100
    learning_rate = 0.1
    
    # 平均每个epoch的重复次数
    iter_per_epoch = max(train_size / batch_size, 1)
    
    network = TwoLayerNet(input_size=784, hidden_size=50, output_size=10)
    for i in range(iters_num):
        print(i,end='')
        batch_mask = np.random.choice(train_size, batch_size)
        x_batch = x_train[batch_mask]
        t_batch = t_train[batch_mask]
        grad = network.numerical_gradient(x_batch, t_batch)
        for key in ('W1', 'b1', 'W2', 'b2'):
            network.params[key] -= learning_rate * grad[key]
        loss = network.loss(x_batch, t_batch)
        train_loss_list.append(loss)
        #计算每个epoch的识别精度
        if i % iter_per_epoch == 0:
            train_acc = network.accurary(x_train, t_train)
            test_acc = network.accurary(x_test, t_test)
            train_acc_list.append(train_acc)
            test_acc_list.append(test_acc)
            print("train acc, test acc | " + str(train_acc) + ", " + str(test_acc))
    

    这个没有运行结果,大约一分钟一次迭代,1W次循环要七天七夜,撑不住……

    相关文章

      网友评论

          本文标题:Chapter 04 神经网络的学习

          本文链接:https://www.haomeiwen.com/subject/mktquqtx.html