利用Eclipse和Maven运行MapReduce程序
在Eclipse上安装MapReduce插件
1.在网上下载MapRe的插件:hadoop2x-eclipse-plugin-master.zip
2.解压后将release文件夹下的hadoop-eclipse-plugin-2.6.0.jar jar包拷贝到eclipse安
装目录的plugin文件夹下.
3.重启Eclipse,就会看到MapReduce插件已经装好了
在Eclipse上配置MapReduce project
1.设置MapReduce Location
hdfsDemo1.png
New Hadoop Location
HDFSDemo4.png
2.配置Hdfs的端口(伪单机模式)
hdfsDemo2.png
3.设置完成后可以看到左边的MapReduce标签栏里面出现了hdfs里的文件
HdfsDemo3.png
在Eclipse里面运行MapReduce程序
配置Maven
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.5.2</version>
<exclusions>
<exclusion>
<groupId>tomcat</groupId>
<artifactId>jasper-compiler</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.5.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>2.5.2</version>
</dependency>
WordCount实例
public static void main(String[] args) throws Exception {
int result = ToolRunner.run(new Configuration(),new WordCount(), args);
System.exit(result);
}
public int run(String[] args) throws Exception {
Path inputPath, outputPath;
if(args.length == 2){
inputPath = new Path(args[0]);
outputPath = new Path(args[1]);
}else{
System.out.println("usage <input> <output>");
return 1;
}
Configuration conf = getConf();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
return job.waitForCompletion(true) ? 0 : 1;
}
public static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable value : values) {
sum += value.get();
}
result.set(sum);
context.write(key, result);
}
}
然后run configuration里面设置传入的参数,一个是输入文件的路
径,一个是输出路径。运行之后就会发现console出现了你想要的信息。
hdfsdemo5.png
网友评论