美文网首页
基础算法题目

基础算法题目

作者: 小螳螂 | 来源:发表于2020-07-07 10:19 被阅读0次

爬楼梯

def clambStairs(n):
    x,y = 1,1
    for _ in range(1,n):
        x,y = y,x+y
    return y
clambStairs(10)
89
clambStairs(2)
2

编辑距离

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)
        dp = [[0 for _ in range(n + 1)] for _ in range(m + 1)]
        print(dp)

        for i in range(m + 1):
            print('i =', i)
            dp[i][0] = i
        for j in range(n + 1):
            print('j = ', j)
            dp[0][j] = j
        print(dp)

        for i in range(1, m + 1):
            for j in range(1, n + 1):
                dp[i][j] = min(
                    dp[i - 1][j - 1] +
                    (0 if word1[i - 1] == word2[j - 1] else 1),
                    dp[i - 1][j] + 1, dp[i][j - 1] + 1)
                print('i = {0},j = {1},dp[i][j] = {2}'.format(i, j, dp[i][j]))

        return dp[i][j]
solu = Solution()
solu.minDistance('zhou','lu')
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
i = 0
i = 1
i = 2
i = 3
i = 4
j =  0
j =  1
j =  2
[[0, 1, 2], [1, 0, 0], [2, 0, 0], [3, 0, 0], [4, 0, 0]]
i = 1,j = 1,dp[i][j] = 1
i = 1,j = 2,dp[i][j] = 2
i = 2,j = 1,dp[i][j] = 2
i = 2,j = 2,dp[i][j] = 2
i = 3,j = 1,dp[i][j] = 3
i = 3,j = 2,dp[i][j] = 3
i = 4,j = 1,dp[i][j] = 4
i = 4,j = 2,dp[i][j] = 3





3

小顶堆 topk

import heapq


def heapsort(data, hp_size=3):
    h = []
    for i in range(len(data)):
        if i >= hp_size:
            heapq.heappushpop(h, data[i])
        else:
            heapq.heappush(h, data[i])
    return [heapq.heappop(h) for _ in range(len(h))]


res = heapsort([6,2,1,-4,9,4,0])
print(res)
[4, 6, 9]
h=[1,2,4,5,6,32,45]
heapq.heappushpop(h,-1)
-1

快排序

# 方式一
def quick_sort(array, left, right):
    if left >= right:
        return
    low = left
    high = right
    key = array[low]
    while left < right:
        while left < right and array[right] > key:
            right -= 1
        array[left] = array[right]
        while left < right and array[left] <= key:
            left += 1
        array[right] = array[left]
    array[right] = key
    quick_sort(array, low, left - 1)
    quick_sort(array, left + 1, high)
print(quick_sort(arr,0,len(arr)-1))
print(arr)
None
[2, 2, 3, 5, 6, 7, 10, 23, 43, 78, 254, 875]
quick_sort(arr,0,len(arr)-1)



# 方式二 常用(ZL)
def quick_sort(arr,start=0,end=None):
    if end is None:
        end = len(arr)-1
    if end<=start:
        return(arr)
    i,j = start,end
    ref = arr[start]
    while j>i:
        if arr[j]>= ref:
            j = j - 1
        else:
            # 此处使用一行语句交换3个元素的值
#             arr[i],arr[j],arr[i+1] = arr[j],arr[i+1],arr[i]
            arr[i],arr[j],arr[i+1] = arr[j],arr[i+1],arr[i] 
#             arr[i],arr[j]=arr[j],arr[i]
            i = i + 1
    quick_sort(arr,start=start,end = i-1)
    quick_sort(arr,start=i+1,end = end)
    return(arr)

print(quick_sort([45,91,1,3,3,2,2,6,6,6,5,5,7]))
[1, 2, 2, 3, 3, 5, 5, 6, 6, 6, 7, 45, 91]




# 方式三
#!/usr/bin/python
# -*- coding: utf-8 -*-
'''
@author: willard
'''

def sub_sort(array,low,high):
    key = array[low]
    while low < high:
        while low < high and array[high] >= key:
            high -= 1
        while low < high and array[high] < key:
            array[low] = array[high]
            low += 1
            array[high] = array[low]
    array[low] = key
    return low


def quick_sort1(array,low,high):
    if low < high:
        key_index = sub_sort(array,low,high)
        quick_sort1(array,low,key_index)
        quick_sort1(array,key_index+1,high)

#array = [8,10,9,6,4,16,5,13,26,18,2,45,34,23,1,7,3]
array1 = [7,3,5,6,2,4,1]

print (array1)
quick_sort1(array1,0,len(array1)-1)
print (array1)
[7, 3, 5, 6, 2, 4, 1]
[1, 2, 3, 4, 5, 6, 7]

# 方式四 不能有重复元素
def quick_sort(array):
    if len(array) < 2:
        return array
    else:
        pivot = array[0]
        less_than_pivot = [x for x in array if x< pivot]
        more_than_pivot = [x for x in array if x> pivot]
        return quick_sort(less_than_pivot) + [pivot] + quick_sort(more_than_pivot)

arr = [10,2,43,5,6,7,875,23,254,78,3,2]
arr1 = [1,2]
quick_sort(arr)
[2, 3, 5, 6, 7, 10, 23, 43, 78, 254, 875]

二分查找

# 实现一
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author  : xiaoke


def binary_search(alist, item):
    """二分查找 非递归方式"""
    n = len(alist)
    start = 0
    end = n - 1
    while start <= end:
        mid = (start + end) // 2
        if alist[mid] == item:
            return True
        elif item < alist[mid]:
            end = mid - 1
        else:
            start = mid + 1
    return False
# 实现二
def binary_search_2(alist, item):
    """二分查找 递归方式"""
    n = len(alist)
    if 0 == n:
        return False
    mid = n // 2
    if alist[mid] == item:
        return True
    elif item < alist[mid]:
        return binary_search_2(alist[:mid], item)
    else:
        return binary_search_2(alist[mid + 1:], item)


if __name__ == '__main__':
    li = [17, 20, 26, 31, 44, 54, 55, 77, 93]
    # print(binary_search(li, 55))
    # print(binary_search(li, 100))
    print(binary_search_2(li, 55))
    print(binary_search_2(li, 100))
# 实现三
def binary_search(arr,target):
    start,end = 0,len(arr)-1
    while True:
        if end - start <=1:
            if target == arr[start]:
                return(start)
            elif target == arr[end]:
                return(end)
            else:
                return(-1)

        mid = (start + end)//2
        if arr[mid]>=target:
            end = mid
        else:
            start = mid

print(binary_search([1,4,7,8,9,12],9))
print(binary_search([1,4,7,8,9,12],3))

斐波那契数列

def fib(n):
    if n <= 0:
        return "请输入正整数"
    if n == 1:
        return [0]
    x,y = 1,1
    a = [0]
    for _ in range(1,n):
        x,y = y,x+y
        a.append(x)
    return a
fib(0)
'请输入正整数'
fib(1)
[0]
fib(2)
[0, 1]
fib(3)
[0, 1, 2]
fib(4)
[0, 1, 2, 3]
fib(5)
[0, 1, 2, 3, 5]
fib(6)
[0, 1, 2, 3, 5, 8]
fib(10)
[0, 1, 2, 3, 5, 8, 13, 21, 34, 55]

两数之和

def sum_of_two(arr,target):
    dic = {}
    for i,x in enumerate(arr):
        j = dic.get(target-x,-1)
        if j != -1:
            return((j,i))
        else:
            dic[x] = i
    return([])

arr = [2,7,4,9]
target = 6
print(sum_of_two(arr,target))
(0, 2)

最大回溯

题目形式:有一个数组,求其中两个数x,y,满足x的索引小于y的索引,使得 x-y 最大。例如 arr = [3,7,2,6,4,1,9,8,5], 最大回撤是6,对应的x=7,y=1。

def max_drawdown(arr):
    assert len(arr)>2, "len(arr) should > 2!"
    x,y = arr[0:2]
    xmax = x
    maxdiff = x-y

    for i in range(2,len(arr)):
        if arr[i-1] > xmax:
            xmax = arr[i-1]
        if xmax - arr[i] > maxdiff:
            maxdiff = xmax - arr[i]
            x,y = xmax,arr[i]

    print("x=",x,",y=",y)
    return(maxdiff)

print(max_drawdown([3,7,2,6,4,1,9,8,5]))
x= 7 ,y= 1
6

合并连个有序数组

def merge_sorted_array(a,b):
    c = []
    i,j = 0,0
    while True:
        if i==len(a):
            c.extend(b[j:])
            return(c)
        elif j==len(b):
            c.extend(a[i:])
            return(c)
        else:
            if a[i]<b[j]:
                c.append(a[i])
                i=i+1
            else:
                c.append(b[j])
                j=j+1

print(merge_sorted_array([1,2,6,8],[2,4,7,10]))
[1, 2, 2, 4, 6, 7, 8, 10]

最大连续子数组之和

def max_sub_array(arr):
    n = len(arr)
    maxi,maxall = arr[0],arr[0]
    for i in range(1,n):
        maxi = max(arr[i],maxi + arr[i])
        maxall = max(maxall,maxi)
    return(maxall)

print(max_sub_array([1,5,-10,2,5,-3,2,6,-3,1]))
12

最长不重复子串

def longest_substr(s):    
    dic = {}
    start,maxlen,substr = 0,0,""

    for i,x in enumerate(s):
        if x in dic:
            start = max(dic[x]+1,start)
            dic[x] = i   
        else:
            dic[x] = i

        if i-start+1>maxlen:
            maxlen = i-start+1
            substr = s[start:i+1]
    return(substr)

print(longest_substr("abcbefgf"))
print(longest_substr("abcdef"))
print(longest_substr("abbcddefh"))
cbefg
abcdef
defh

全排列

import numpy as np 
def permutations(arr):
    if len(arr)<=1:
        return([arr])
    t = [arr[0:1]]
    i = 1
    while i<=len(arr)-1:
        a = arr[i]
        t = [xs[0:j]+[a]+xs[j:] for xs in t for j in range(i+1)]
        t = np.unique(t,axis=0).tolist()
        i = i+1
    return(t)
print(permutations([1,1,3]))
[[1, 1, 3], [1, 3, 1], [3, 1, 1]]

三数之和

def sum_of_three(arr,target):
    assert len(arr)>=3,"len(arr) should >=3!"
    arr.sort()
    ans = set()
    for k,c in enumerate(arr):
        i,j = k+1,len(arr)-1
        while i<j:
            if arr[i]+arr[j]+c <target:
                i = i+1
            elif arr[i]+arr[j]+c > target:
                j = j-1
            else:
                ans.update({(arr[k],arr[i],arr[j])})
                i = i+1
                j = j-1
    return(list(ans))

print(sum_of_three([-3,-1,-2,1,2,3],0))
[(-2, -1, 3), (-3, 1, 2)]

相关文章

  • 基础算法题目

    爬楼梯 编辑距离 小顶堆 topk 快排序 二分查找 斐波那契数列 两数之和 最大回溯 题目形式:有一个数组,求其...

  • 基础算法题目练习集合

    DFS 郑轻工2386 商品券[http://acm.zzuli.edu.cn/problem.php?id=23...

  • C基础算法

    C语言的学习要从基础开始,这里是100个经典的算法-1C语言的学习要从基础开始,这里是100个经典的 算法 题目:...

  • 基础算法练习

    题目:三数之和 基础算法的练习,是进入大厂的必要的知识积累。共勉

  • 算法题目

    一、 分析: 一开始想多了,用了DFS回溯法,然后显示超出内存,可能是当n取值很大时递归太多的原因吧 然后又去搜索...

  • 算法题目

    ZERO 持续更新 请关注:https://zorkelvll.cn/blogs/zorkelvll/artic...

  • 算法题目

  • XHS-算法实习岗位-面试记录

    岗位性质:日常实习 推荐算法岗位 目前状态:两次技术面试,最终面试待定 一面过程 基础算法题目: 给定有序数...

  • 斐波那契和动态规划

    在基础算法领域,动态规划算是比较难得一类算法了,而且在算法竞赛或者面试中会有大量动态规划的题目,因此下功夫理解这个...

  • 程序员算法基础——贪心算法

    程序员算法基础——贪心算法 程序员算法基础——贪心算法

网友评论

      本文标题:基础算法题目

      本文链接:https://www.haomeiwen.com/subject/mmxaqktx.html