Problem
Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
Each number in candidates
may only be used once in the combination.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5,
A solution set is:
[
[1,2,2],
[5]
]
问题
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次。
说明:
- 所有数字(包括目标数)都是正整数。
- 解集不能包含重复的组合。
示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
所求解集为:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5,
所求解集为:
[
[1,2,2],
[5]
]
思路
回溯模板
res = []
def backtrack(路径, 选择列表):
if 满足结束条件:
res.append(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径, 选择列表)
撤销选择
Python3 代码
from typing import List
class Solution:
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
n = len(candidates)
if n == 0:
return []
# accelerate 剪枝提速,非必需
candidates.sort()
path, res = [], []
self.dfs(candidates, 0, n, path, res, target)
return res
def dfs(self, candidates, start, n, path, res, target):
# 1.valid result 递归终止情况
if target == 0:
res.append(path[:])
return
for i in range(start, n):
tmp = target - candidates[i]
# 3.pruning 剪枝
if tmp < 0:
break
# 防止出现这种情况:一个数字使用多次
if i > start and candidates[i] == candidates[i - 1]:
continue
# 2.backtrack and update 回溯以及更新 path
path.append(candidates[i])
self.dfs(candidates, i + 1, n, path, res, tmp)
path.pop()
网友评论