![](https://img.haomeiwen.com/i9302783/004c4d115e14da69.png)
![](https://img.haomeiwen.com/i9302783/eb36e5785c07cde3.png)
![](https://img.haomeiwen.com/i9302783/9941e238fe9e07c5.png)
![](https://img.haomeiwen.com/i9302783/c661e5b47ae6d522.png)
![](https://img.haomeiwen.com/i9302783/d3dc941256a6722c.png)
![](https://img.haomeiwen.com/i9302783/b6c6139d26861587.png)
![](https://img.haomeiwen.com/i9302783/22b316ab10cdaffc.png)
![](https://img.haomeiwen.com/i9302783/6d78c4711c08038c.png)
- FNN将FM模型训出的结果作为其中的embedding层,上面套上全连接神经网络。
- 模型底层先用FM对经过one-hot binary编码的输入数据进行embedding,把稀疏的二进制特征向量映射到 dense real 层,之后再把dense real 层作为输入变量进行建模,这种做法成功避免了高维二进制输入数据的计算复杂度。
![](https://img.haomeiwen.com/i9302783/60aa47fbb30136a5.png)
- CCPM: 模型结构整体结构相对比较简单,首先将特征映射到embedding稠密向量,然后经过卷积神经网络抽取高维特征,最后通过pooling层抽取主要的高维信息。
![](https://img.haomeiwen.com/i9302783/1cbd6692ba7081be.png)
---------------------------------------------------------------------------------
![](https://img.haomeiwen.com/i9302783/61259d3560101282.png)
![](https://img.haomeiwen.com/i9302783/73879415a431056f.png)
![](https://img.haomeiwen.com/i9302783/b5ed93bfffe81b2e.png)
![](https://img.haomeiwen.com/i9302783/d012964364754618.png)
![](https://img.haomeiwen.com/i9302783/03e1191011e03575.png)
![](https://img.haomeiwen.com/i9302783/75c936bbd90662c1.png)
![](https://img.haomeiwen.com/i9302783/31014da40de13955.png)
![](https://img.haomeiwen.com/i9302783/a4b255fc6d38b167.png)
网友评论