美文网首页算法学习
算法题--图的深度拷贝

算法题--图的深度拷贝

作者: 岁月如歌2020 | 来源:发表于2020-05-07 19:30 被阅读0次
    image.png

    0. 链接

    题目链接

    1. 题目

    Given a reference of a node in a connected undirected graph.

    Return a deep copy (clone) of the graph.

    Each node in the graph contains a val (int) and a list (List[Node]) of its neighbors.

    class Node {
        public int val;
        public List<Node> neighbors;
    }
    

    Test case format:

    For simplicity sake, each node's value is the same as the node's index (1-indexed). For example, the first node with val = 1, the second node with val = 2, and so on. The graph is represented in the test case using an adjacency list.

    Adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

    The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

    示意图

    Example 1:


    示意图
    Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
    Output: [[2,4],[1,3],[2,4],[1,3]]
    Explanation: There are 4 nodes in the graph.
    1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
    2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
    3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
    4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
    

    Example 2:


    示意图
    Input: adjList = [[]]
    Output: [[]]
    Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
    

    Example 3:

    Input: adjList = []
    Output: []
    Explanation: This an empty graph, it does not have any nodes.
    

    Example 4:


    示意图
    Input: adjList = [[2],[1]]
    Output: [[2],[1]]
    

    Constraints:

    1 <= Node.val <= 100
    Node.val is unique for each node.
    Number of Nodes will not exceed 100.
    There is no repeated edges and no self-loops in the graph.
    The Graph is connected and all nodes can be visited starting from the given node.

    2. 思路1: 队列+BFS

    1. 基本思路是:
    • 初始化一个队列,将任意一个节点作为起始节点,添加到队尾;初始化一个字典dic<原始节点, 拷贝节点>
    • 每次从队头pop出一个节点, 然后把它的邻居节点逐个添加到队尾 这样就确保了FIFO的特性, 达成了宽度搜索
    • 处理每个节点的时候, 遍历它的每个邻居, 判断它是否处理过(即在dic中有它), 如果没有, 则实施节点拷贝, 并添加到dic中; 且记录拷贝邻居节点成为当前拷贝节点的邻居
    • 直至队列为空, 则由于图的连通性, 所有节点都已处理完毕
    1. 分析:
    • 所有节点N都被遍历常数次, 且所有边E都被遍历常数次, 查找是否遍历过依赖dic的O(1)查找特性, 于是时间复杂度为O(N+E), 空间复杂度O(N)
    1. 复杂度
    • 时间复杂度 O(N+E)
    • 空间复杂度 O(N)

    3. 代码

    # coding:utf8
    import collections
    
    
    # Definition for a Node.
    class Node:
        def __init__(self, val = 0, neighbors = None):
            self.val = val
            self.neighbors = neighbors if neighbors is not None else []
    
    
    # BFS
    class Solution:
        def cloneGraph(self, node: 'Node') -> 'Node':
            if node is None:
                return None
    
            dic = dict()
            queue = collections.deque()
            node_copy = Node(node.val)
            queue.append(node)
            dic[node] = node_copy
    
            while len(queue) > 0:
                head = queue.popleft()
                for neighbor in head.neighbors:
                    if neighbor not in dic:
                        # 遇到新节点, 则拷贝新节点内容到目标容器
                        neighbor_copy = Node(neighbor.val)
                        queue.append(neighbor)
                        dic[neighbor] = neighbor_copy
                        # 补齐head和neighbor之间的连接关系
                        dic[head].neighbors.append(neighbor_copy)
                    else:
                        # 补齐head和neighbor之间的连接关系
                        dic[head].neighbors.append(dic[neighbor])
    
            return node_copy
    
    
    def print_graph(node1):
        queue = collections.deque()
        queue.append(node1)
        visited_set = set()
        while len(queue) > 0:
            head = queue.popleft()
            if head in visited_set:
                continue
            visited_set.add(head)
            neighbors = list()
            for neighbor in head.neighbors:
                neighbors.append(neighbor.val)
                if neighbor not in visited_set:
                    queue.append(neighbor)
            print('node.val={}, neigbors: {}'.format(head.val, neighbors))
    
    
    solution = Solution()
    
    graph1 = node1 = Node(1)
    node2 = Node(2)
    node3 = Node(3)
    node4 = Node(4)
    node1.neighbors += [node2, node4]
    node2.neighbors += [node1, node3]
    node3.neighbors += [node2, node4]
    node4.neighbors += [node1, node3]
    print('input:')
    print_graph(graph1)
    print('*' * 10)
    graph1_copy = solution.cloneGraph(graph1)
    print('output:')
    print_graph(graph1_copy)
    print('=' * 50)
    
    

    输出结果

    input:
    node.val=1, neigbors: [2, 4]
    node.val=2, neigbors: [1, 3]
    node.val=4, neigbors: [1, 3]
    node.val=3, neigbors: [2, 4]
    **********
    output:
    node.val=1, neigbors: [2, 4]
    node.val=2, neigbors: [1, 3]
    node.val=4, neigbors: [1, 3]
    node.val=3, neigbors: [2, 4]
    ==================================================
    

    4. 结果

    image.png

    5. 思路2: 栈+DFS

    1. 过程
    • 与BFS相比, 唯一的区别是, 循环里每次都取出栈尾元素进行处理, 这样,它遍历节点的顺序就变成了紧跟节点入栈的节奏, 先找到一条到达终点的最深路径, 再处理其他路径, 即为深度优先搜索
    1. 分析
      同BFS相同
    2. 时间复杂度 O(N+E)
    3. 空间复杂度 O(N)

    6. 代码

    # coding:utf8
    import collections
    
    
    # Definition for a Node.
    class Node:
        def __init__(self, val = 0, neighbors = None):
            self.val = val
            self.neighbors = neighbors if neighbors is not None else []
    
    
    # DFS
    class Solution:
        def cloneGraph(self, node: 'Node') -> 'Node':
            if node is None:
                return None
    
            dic = dict()
            stack = list()
            node_copy = Node(node.val)
            dic[node] = node_copy
            stack.append(node)
            while len(stack) > 0:
                last = stack.pop()
                for neighbor in last.neighbors:
                    if neighbor not in dic:
                        neighbor_copy = Node(neighbor.val)
                        stack.append(neighbor)
                        dic[neighbor] = neighbor_copy
                        dic[last].neighbors.append(dic[neighbor])
                    else:
                        dic[last].neighbors.append(dic[neighbor])
    
            return node_copy
    
    
    def print_graph(node1):
        queue = collections.deque()
        queue.append(node1)
        visited_set = set()
        while len(queue) > 0:
            head = queue.popleft()
            if head in visited_set:
                continue
            visited_set.add(head)
            neighbors = list()
            for neighbor in head.neighbors:
                neighbors.append(neighbor.val)
                if neighbor not in visited_set:
                    queue.append(neighbor)
            print('node.val={}, neigbors: {}'.format(head.val, neighbors))
    
    
    solution = Solution()
    
    graph1 = node1 = Node(1)
    node2 = Node(2)
    node3 = Node(3)
    node4 = Node(4)
    node1.neighbors += [node2, node4]
    node2.neighbors += [node1, node3]
    node3.neighbors += [node2, node4]
    node4.neighbors += [node1, node3]
    print('input:')
    print_graph(graph1)
    print('*' * 10)
    graph1_copy = solution.cloneGraph(graph1)
    print('output:')
    print_graph(graph1_copy)
    print('=' * 50)
    

    输出结果

    input:
    node.val=1, neigbors: [2, 4]
    node.val=2, neigbors: [1, 3]
    node.val=4, neigbors: [1, 3]
    node.val=3, neigbors: [2, 4]
    **********
    output:
    node.val=1, neigbors: [2, 4]
    node.val=2, neigbors: [1, 3]
    node.val=4, neigbors: [1, 3]
    node.val=3, neigbors: [2, 4]
    ==================================================
    

    7. 结果

    image.png

    相关文章

      网友评论

        本文标题:算法题--图的深度拷贝

        本文链接:https://www.haomeiwen.com/subject/mprzghtx.html