美文网首页
2018-09-16

2018-09-16

作者: 表达_ | 来源:发表于2018-09-16 20:18 被阅读0次

    文章名:Supervised Deep Feature Extraction for Hyperspectral Image Classification

    • 期刊名: IEEE Transactions on Geoscience & Remote Sensing
    • 摘要:提出了一种基于siamese网络(S-CNN)的改进监督深度特征提取方法。首先,利用5层cnn对高光谱数据提取深层特征(cnn被当做一种非线性转换函数);接着,训练由两个cnn组成的siamese网络学习类内之间的低易变性以及类间的高易变性。特别地,S-CNN的训练loss是margin ranking loss function(能够提取区分性更强(more discriminative)的分类特征)。最终在三个数据集上提取特征输入到SVM中,实现比传统方法更好的分类效果。
    • 网络结构
      bing5-2769673-small.gif
    • S-CNN的loss
      CodeCogsEqn.gif
      CodeCogsEqn.gif
      p1和 p2是输入图像对,f(p1)和f(p2)是CNN提取的特征,D()代表欧氏距离。
    • 相关工作
      1 .J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a ‘Siamese’ time delay neural network,” in Proc. Adv. Neural Inf. Process. Syst., 1994, pp. 737–744.
      2 X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg, “MatchNet: Unifying feature and metric learning for patch-based matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3279–3286.
      3 A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Discriminative unsupervised feature learning with convolutional neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 766–774.

    参考文献:
    Liu B, Yu X, Zhang P, et al. Supervised Deep Feature Extraction for Hyperspectral Image Classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2018, 56(4):1909-1921.

    相关文章

      网友评论

          本文标题:2018-09-16

          本文链接:https://www.haomeiwen.com/subject/mtpfnftx.html