美文网首页
Spark Lineage(Narrow/Wide Depend

Spark Lineage(Narrow/Wide Depend

作者: 尘世中一介迷途小码农 | 来源:发表于2017-07-11 22:00 被阅读0次

Lineage

利用内存加快数据加载,在众多的其它的In-Memory类数据库或Cache类系统中也有实现,Spark的主要区别在于它处理分布式运算环境下的数据容错性(节点实效/数据丢失)问题时采用的方案。为了保证RDD中数据的健壮性,RDD数据集通过所谓的血统关系(Lineage)记住了它是如何从其它RDD中演变过来的。

相比其它系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的。特定数据转换(Transformation)操作(filter, map, join etc.)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage获取足够的信息来重新运算和恢复丢失的数据分区。这种粗颗粒的数据模型,限制了Spark的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。

Narrow Dependencies

RDD在Lineage依赖方面分为两种Narrow DependenciesWide Dependencies用来解决数据容错的高效性。Narrow Dependencies是指父RDD的每一个分区最多被一个子RDD的分区所用,表现为一个父RDD的分区对应于一个子RDD的分区或多个父RDD的分区对应于一个子RDD的分区,也就是说一个父RDD的一个分区不可能对应一个子RDD的多个分区。

Wide Dependencies

指子RDD的分区依赖于父RDD的多个分区或所有分区,也就是说存在一个父RDD的一个分区对应一个子RDD的多个分区。对与Wide Dependencies,这种计算的输入和输出在不同的节点上,lineage方法对与输入节点完好,而输出节点宕机时,通过重新计算,这种情况下,这种方法容错是有效的,否则无效,因为无法重试,需要向上其祖先追溯看是否可以重试(这就是lineage,血统的意思),Narrow Dependencies对于数据的重算开销要远小于Wide Dependencies的数据重算开销。

Narrow/Wide Dependencies

容错

在RDD计算,通过checkpoint进行容错,做checkpoint有两种方式,一个是checkpoint data,一个是logging the updates。用户可以控制采用哪种方式来实现容错,默认是logging the updates方式,通过记录跟踪所有生成RDD的转换(transformations)也就是记录每个RDD的lineage(血统)来重新计算生成丢失的分区数据。

Lineage过长,对rdd做doCheckpoint()

 SparkContext.setCheckPointDir() //设置数据存路径

相关文章

网友评论

      本文标题:Spark Lineage(Narrow/Wide Depend

      本文链接:https://www.haomeiwen.com/subject/mvfvhxtx.html