美文网首页
7.BA优化中的单节点高斯牛顿方程推导以及g2o写法

7.BA优化中的单节点高斯牛顿方程推导以及g2o写法

作者: 光能蜗牛 | 来源:发表于2022-09-26 11:05 被阅读0次
    image.png

    从世界坐标系下的坐标点p到像素点(u_s,v_s)的流程如上图,其中r_c^2=u_c^2+v_c^2
    根据上面的流程可以抽象出如下信息

    image.png
    如上所示,我们可以定义观测流程z=h(x,y),其中x指代R,t,而y指代三维点p,而z表示实际测得的特征像素点坐标 image.png
    如上图为了让问题便于后面的求解,这里采用\kexi 表示姿态的李代数表示\xi ^{\wedge}=[R|t]
    于是z_{ij}=h(\xi^{\wedge}_{i},p_j),表示从姿态\xi ^{\wedge}_i去观测世界坐标点p_j

    可定义我们得到某个姿态观测某个世界坐标点的 误差函数
    error_{ij}=z_{ij观测}-z_{ij}=z_{ij观测}-h(\xi^{\wedge}_{i},p_j)

    所以表示上图的整体误差函数应该是
    \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||error_{ij}||^2=\frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij观测}-h(\xi^{\wedge}_i,p_j)||^2

    我们知道对于n元函数泰勒一阶展开有
    F(X^{k+1})\approx F(X^{k})+J(X^k)^T\Delta X
    也可以写成
    F(X^{k}+\Delta X)\approx F(X^{k})+J(X^k)^T\Delta X
    对于此处实际的函数
    可写成error_{ij}(X_{ij}^k+\Delta X_{ij})\approx error_{ij}(X_{ij}^k)+\frac{\partial error_{ij}(X_{ij}^k)}{\partial \Delta X_{ij}}\Delta X_{ij}

    待优化变量X_{ij}=[\xi_i,p_j]^T=[]

    对原函数进行展开
    error_{ij}=z_{ij观测}-h(\xi_{i},p_j)
    =z_{ij观测}-\frac{1}{s}Kp'_j
    =z_{ij观测}-\frac{1}{s}Ke^{\xi_i^{\wedge}}p_j

    其中p'_j=e^{\xi_i^{\wedge}}p_j ,,p'_j为相机坐标[X',Y',Z']^T

    在不考虑畸变的情况下对p_j 投影到像素坐标即:

    \begin{bmatrix}u\\v\\1\end{bmatrix}=\frac{1}{s}\begin{bmatrix}f_x&0&c_x\\0&f_y&c_y\\0&0&1\end{bmatrix}\begin{bmatrix}X'\\Y'\\Z'\end{bmatrix}

    得到u=f_x\frac{X'}{Z'}+c_xv=f_y\frac{Y'}{Z'}+c_y

    \frac{\partial error_{ij}}{\partial \Delta X}分为两个部分,一部分对李代数\xi_{i}求导,另一部分是对p_j求导

    对于第一部分利用链式法则
    \frac{\partial error_{ij}}{\partial \delta \xi_i}=\frac{\partial error_{ij}}{\partial p'_j}.\frac{\partial p'_j}{\partial \delta \xi_i}

    我们知道前一项
    \frac{\partial error_{ij}}{\partial p'_j} =\frac{\partial(z_{ij观测}-\frac{1}{s}Kp'_j)}{\partial p'_j} =\frac{\partial\begin{bmatrix}u_{ij观测}-f_x\frac{X'}{Z'}-c_x\\v_{ij观测}-f_y\frac{Y'}{Z'}-c_y\end{bmatrix}}{\partial\begin{bmatrix}X'&Y'&Z'\end{bmatrix}}

    =-\begin{bmatrix}\frac{f_x}{Z'}&0&-\frac{f_xX'}{Z'^2}\\ 0&\frac{f_y}{Z'}&-\frac{f_yY'}{Z'^2} \end{bmatrix}

    而第二项
    \frac{\partial p'_j}{\partial \delta \xi_i}=\frac{\partial(e^{\xi_i^{\wedge}}p_j)}{\partial \delta \xi_i}=\frac{\partial (Tp_j)}{\partial \delta \xi_i} 注:\xi=\begin{bmatrix}\phi\\\rho\end{bmatrix}

    =\begin{bmatrix}I&-(Rp_j+t)^{\wedge}\\0^T&0^T\end{bmatrix}_{4\times 6} \triangleq (Tp_j)^\bigodot(此处比较复杂,结论由slam14讲,4.3.5给出,这个坑太大一下子填不过来,先摘抄了

    =\begin{bmatrix}I&-(p'_j)^{\wedge}\\0^T&0^T\end{bmatrix}

    因为此处p'_j是三维,因此,结果也只取三行
    \frac{\partial p'_j}{\partial \delta \xi_i}=\begin{bmatrix}I&-(p'_j)^{\wedge}\end{bmatrix}_{3\times 6}=\begin{bmatrix} 1&0&0&0&Z'&-Y'\\ 0&1&0&-Z'&0&X'\\ 0&0&1&Y'&-X'&0\\ \end{bmatrix}

    于是最终第一部分的雅可比矩阵如下

    \frac{\partial error_{ij}}{\partial \delta \xi_i}=\frac{\partial error_{ij}}{\partial p'_j}.\frac{\partial p'_j}{\partial \delta \xi_i}

    =-\begin{bmatrix}\frac{f_x}{Z'}&0&-\frac{f_xX'}{Z'^2}\\ 0&\frac{f_y}{Z'}&-\frac{f_yY'}{Z'^2} \end{bmatrix} \begin{bmatrix} 1&0&0&0&Z'&-Y'\\ 0&1&0&-Z'&0&X'\\ 0&0&1&Y'&-X'&0\\ \end{bmatrix}

    =-\begin{bmatrix} \frac{f_x}{Z'}&0&-\frac{f_xX'}{Z'^2}&-\frac{f_xX'Y'}{Z'^2}&f_x+\frac{f_xX'^2}{Z'^2}&-\frac{f_xY'}{Z'}\\ 0&\frac{f_y}{Z'}&-\frac{f_yY'}{Z'^2}&-f_y-\frac{f_yY'^2}{Z'^2}&\frac{f_yX'Y'}{Z'^2}&\frac{f_yX'}{Z'} \end{bmatrix}

    接下来是对第二部分,即特征点空间位置p_j的雅可比偏导数矩阵
    依旧根据链式求导法则

    \frac{\partial error_{ij}}{\partial p_j}=\frac{\partial error_{ij}}{\partial p'_j}.\frac{\partial p'_j}{\partial p_j}
    上式的第一项已经推导过,而第二项
    我们知道

    p_j'=Rp_j+t

    所以\frac{\partial p'_j}{\partial p_j}=R

    \frac{\partial error_{ij}}{\partial p_j}=-\begin{bmatrix}\frac{f_x}{Z'}&0&-\frac{f_xX'}{Z'^2}\\ 0&\frac{f_y}{Z'}&-\frac{f_yY'}{Z'^2} \end{bmatrix}R

    这样,我们对于位姿和世界坐标点的雅可比矩阵就都有了

    根据第5小节的内容,我们知道

    高斯牛顿对于单节点多条边的情况是这么处理的
    \Big(\sum_{j=1}^N\big(J(X^{(k)})J(X^{(k)})^T\big) \Big).\Delta X=-\sum_{j=1}^NJ(X^{(k)})f(X^{(k)})
    具体来讲应该是这样

    \Big(\sum_{j=1}^N\big(J(\xi_i,p_j)J(\xi_i,p_j)^T\big) \Big).\Delta \xi_i=-\sum_{j=1}^NJ(\xi_i,p_j)e_{ij}(\xi_i,p_j)

    即,对单节点的所有边的误差迭代,且这里只优化了\xi_i

    对应到这边具体的slam问题,通常是多个节点,即多个观察pose的问题,优化的也不仅仅是pose了,还得包括观察的路标,这里暂时不讲等下一节
    下面的例子同样的也只针对单节点考虑优化问题

    在g2o优化中,以防误解,这里再把节点和边的概念补充一下,如下图,每个节点Pose,比如节点i\xi_i表示,节点\xi_i能看到多个不同的p_j ,也就是\xi_i和每一个p_j将构成单个的边,所以单个Pose的观测会有多条边

    image.png

    实际的代码实现方式在slam14讲ch7/pose_estimation_3d2d.cpp的有所实现,确实和我们理解的一样
    注意这个代码实现包含了好几种方式
    包含手写高斯牛顿方式,opencv的求解方式,以及g2o方式,
    这里我们重点参考手写高斯牛顿以及g2o的写法的类似
    以下是代码的参考

    #include <iostream>
    #include <opencv2/core/core.hpp>
    #include <opencv2/features2d/features2d.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/calib3d/calib3d.hpp>
    #include <Eigen/Core>
    #include <g2o/core/base_vertex.h>
    #include <g2o/core/base_unary_edge.h>
    #include <g2o/core/sparse_optimizer.h>
    #include <g2o/core/block_solver.h>
    #include <g2o/core/solver.h>
    #include <g2o/core/optimization_algorithm_gauss_newton.h>
    #include <g2o/solvers/dense/linear_solver_dense.h>
    #include <sophus/se3.hpp>
    #include <chrono>
    
    using namespace std;
    using namespace cv;
    
    void find_feature_matches(
      const Mat &img_1, const Mat &img_2,
      std::vector<KeyPoint> &keypoints_1,
      std::vector<KeyPoint> &keypoints_2,
      std::vector<DMatch> &matches);
    
    // 像素坐标转相机归一化坐标
    Point2d pixel2cam(const Point2d &p, const Mat &K);
    
    // BA by g2o
    typedef vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d>> VecVector2d;
    typedef vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d>> VecVector3d;
    
    void bundleAdjustmentG2O(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose
    );
    
    // BA by gauss-newton
    void bundleAdjustmentGaussNewton(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose
    );
    
    int main(int argc, char **argv) {
      if (argc != 5) {
        cout << "usage: pose_estimation_3d2d img1 img2 depth1 depth2" << endl;
        return 1;
      }
      //-- 读取图像
      Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_COLOR);
      Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_COLOR);
      assert(img_1.data && img_2.data && "Can not load images!");
    
      vector<KeyPoint> keypoints_1, keypoints_2;
      vector<DMatch> matches;
      find_feature_matches(img_1, img_2, keypoints_1, keypoints_2, matches);
      cout << "一共找到了" << matches.size() << "组匹配点" << endl;
    
      // 建立3D点
      Mat d1 = imread(argv[3], CV_LOAD_IMAGE_UNCHANGED);       // 深度图为16位无符号数,单通道图像
      Mat K = (Mat_<double>(3, 3) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1);
      vector<Point3f> pts_3d;
      vector<Point2f> pts_2d;
      for (DMatch m:matches) {
        ushort d = d1.ptr<unsigned short>(int(keypoints_1[m.queryIdx].pt.y))[int(keypoints_1[m.queryIdx].pt.x)];
        if (d == 0)   // bad depth
          continue;
        float dd = d / 5000.0;
        Point2d p1 = pixel2cam(keypoints_1[m.queryIdx].pt, K);
        pts_3d.push_back(Point3f(p1.x * dd, p1.y * dd, dd));
        pts_2d.push_back(keypoints_2[m.trainIdx].pt);
      }
    
      cout << "3d-2d pairs: " << pts_3d.size() << endl;
    
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      Mat r, t;
      solvePnP(pts_3d, pts_2d, K, Mat(), r, t, false); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
      Mat R;
      cv::Rodrigues(r, R); // r为旋转向量形式,用Rodrigues公式转换为矩阵
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp in opencv cost time: " << time_used.count() << " seconds." << endl;
    
      cout << "R=" << endl << R << endl;
      cout << "t=" << endl << t << endl;
    
      VecVector3d pts_3d_eigen;
      VecVector2d pts_2d_eigen;
      for (size_t i = 0; i < pts_3d.size(); ++i) {
        pts_3d_eigen.push_back(Eigen::Vector3d(pts_3d[i].x, pts_3d[i].y, pts_3d[i].z));
        pts_2d_eigen.push_back(Eigen::Vector2d(pts_2d[i].x, pts_2d[i].y));
      }
    
      cout << "calling bundle adjustment by gauss newton" << endl;
      Sophus::SE3d pose_gn;
      t1 = chrono::steady_clock::now();
      bundleAdjustmentGaussNewton(pts_3d_eigen, pts_2d_eigen, K, pose_gn);
      t2 = chrono::steady_clock::now();
      time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp by gauss newton cost time: " << time_used.count() << " seconds." << endl;
    
      cout << "calling bundle adjustment by g2o" << endl;
      Sophus::SE3d pose_g2o;
      t1 = chrono::steady_clock::now();
      bundleAdjustmentG2O(pts_3d_eigen, pts_2d_eigen, K, pose_g2o);
      t2 = chrono::steady_clock::now();
      time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "solve pnp by g2o cost time: " << time_used.count() << " seconds." << endl;
      return 0;
    }
    
    void find_feature_matches(const Mat &img_1, const Mat &img_2,
                              std::vector<KeyPoint> &keypoints_1,
                              std::vector<KeyPoint> &keypoints_2,
                              std::vector<DMatch> &matches) {
      //-- 初始化
      Mat descriptors_1, descriptors_2;
      // used in OpenCV3
      Ptr<FeatureDetector> detector = ORB::create();
      Ptr<DescriptorExtractor> descriptor = ORB::create();
      // use this if you are in OpenCV2
      // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
      // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
      Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
      //-- 第一步:检测 Oriented FAST 角点位置
      detector->detect(img_1, keypoints_1);
      detector->detect(img_2, keypoints_2);
    
      //-- 第二步:根据角点位置计算 BRIEF 描述子
      descriptor->compute(img_1, keypoints_1, descriptors_1);
      descriptor->compute(img_2, keypoints_2, descriptors_2);
    
      //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
      vector<DMatch> match;
      // BFMatcher matcher ( NORM_HAMMING );
      matcher->match(descriptors_1, descriptors_2, match);
    
      //-- 第四步:匹配点对筛选
      double min_dist = 10000, max_dist = 0;
    
      //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
      for (int i = 0; i < descriptors_1.rows; i++) {
        double dist = match[i].distance;
        if (dist < min_dist) min_dist = dist;
        if (dist > max_dist) max_dist = dist;
      }
    
      printf("-- Max dist : %f \n", max_dist);
      printf("-- Min dist : %f \n", min_dist);
    
      //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
      for (int i = 0; i < descriptors_1.rows; i++) {
        if (match[i].distance <= max(2 * min_dist, 30.0)) {
          matches.push_back(match[i]);
        }
      }
    }
    
    Point2d pixel2cam(const Point2d &p, const Mat &K) {
      return Point2d
        (
          (p.x - K.at<double>(0, 2)) / K.at<double>(0, 0),
          (p.y - K.at<double>(1, 2)) / K.at<double>(1, 1)
        );
    }
    
    void bundleAdjustmentGaussNewton(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose) {
      typedef Eigen::Matrix<double, 6, 1> Vector6d;
      const int iterations = 10;
      double cost = 0, lastCost = 0;
      double fx = K.at<double>(0, 0);
      double fy = K.at<double>(1, 1);
      double cx = K.at<double>(0, 2);
      double cy = K.at<double>(1, 2);
    
      for (int iter = 0; iter < iterations; iter++) {
        Eigen::Matrix<double, 6, 6> H = Eigen::Matrix<double, 6, 6>::Zero();
        Vector6d b = Vector6d::Zero();
    
        cost = 0;
        // compute cost
        for (int i = 0; i < points_3d.size(); i++) {
          Eigen::Vector3d pc = pose * points_3d[i];
          double inv_z = 1.0 / pc[2];
          double inv_z2 = inv_z * inv_z;
          Eigen::Vector2d proj(fx * pc[0] / pc[2] + cx, fy * pc[1] / pc[2] + cy);
    
          Eigen::Vector2d e = points_2d[i] - proj;
    
          cost += e.squaredNorm();
          Eigen::Matrix<double, 2, 6> J;
          J << -fx * inv_z,
            0,
            fx * pc[0] * inv_z2,
            fx * pc[0] * pc[1] * inv_z2,
            -fx - fx * pc[0] * pc[0] * inv_z2,
            fx * pc[1] * inv_z,
            0,
            -fy * inv_z,
            fy * pc[1] * inv_z2,
            fy + fy * pc[1] * pc[1] * inv_z2,
            -fy * pc[0] * pc[1] * inv_z2,
            -fy * pc[0] * inv_z;
    
          H += J.transpose() * J;
          b += -J.transpose() * e;
        }
    
        Vector6d dx;
        dx = H.ldlt().solve(b);
    
        if (isnan(dx[0])) {
          cout << "result is nan!" << endl;
          break;
        }
    
        if (iter > 0 && cost >= lastCost) {
          // cost increase, update is not good
          cout << "cost: " << cost << ", last cost: " << lastCost << endl;
          break;
        }
    
        // update your estimation
        pose = Sophus::SE3d::exp(dx) * pose;
        lastCost = cost;
    
        cout << "iteration " << iter << " cost=" << std::setprecision(12) << cost << endl;
        if (dx.norm() < 1e-6) {
          // converge
          break;
        }
      }
    
      cout << "pose by g-n: \n" << pose.matrix() << endl;
    }
    
    /// vertex and edges used in g2o ba
    class VertexPose : public g2o::BaseVertex<6, Sophus::SE3d> {
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    
      virtual void setToOriginImpl() override {
        _estimate = Sophus::SE3d();
      }
    
      /// left multiplication on SE3
      virtual void oplusImpl(const double *update) override {
        Eigen::Matrix<double, 6, 1> update_eigen;
        update_eigen << update[0], update[1], update[2], update[3], update[4], update[5];
        _estimate = Sophus::SE3d::exp(update_eigen) * _estimate;
      }
    
      virtual bool read(istream &in) override {}
    
      virtual bool write(ostream &out) const override {}
    };
    
    class EdgeProjection : public g2o::BaseUnaryEdge<2, Eigen::Vector2d, VertexPose> {
    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
    
      EdgeProjection(const Eigen::Vector3d &pos, const Eigen::Matrix3d &K) : _pos3d(pos), _K(K) {}
    
      virtual void computeError() override {
        const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
        Sophus::SE3d T = v->estimate();
        Eigen::Vector3d pos_pixel = _K * (T * _pos3d);
        pos_pixel /= pos_pixel[2];
        _error = _measurement - pos_pixel.head<2>();
      }
    
      virtual void linearizeOplus() override {
        const VertexPose *v = static_cast<VertexPose *> (_vertices[0]);
        Sophus::SE3d T = v->estimate();
        Eigen::Vector3d pos_cam = T * _pos3d;
        double fx = _K(0, 0);
        double fy = _K(1, 1);
        double cx = _K(0, 2);
        double cy = _K(1, 2);
        double X = pos_cam[0];
        double Y = pos_cam[1];
        double Z = pos_cam[2];
        double Z2 = Z * Z;
        _jacobianOplusXi
          << -fx / Z, 0, fx * X / Z2, fx * X * Y / Z2, -fx - fx * X * X / Z2, fx * Y / Z,
          0, -fy / Z, fy * Y / (Z * Z), fy + fy * Y * Y / Z2, -fy * X * Y / Z2, -fy * X / Z;
      }
    
      virtual bool read(istream &in) override {}
    
      virtual bool write(ostream &out) const override {}
    
    private:
      Eigen::Vector3d _pos3d;
      Eigen::Matrix3d _K;
    };
    
    void bundleAdjustmentG2O(
      const VecVector3d &points_3d,
      const VecVector2d &points_2d,
      const Mat &K,
      Sophus::SE3d &pose) {
    
      // 构建图优化,先设定g2o
      typedef g2o::BlockSolver<g2o::BlockSolverTraits<6, 3>> BlockSolverType;  // pose is 6, landmark is 3
      typedef g2o::LinearSolverDense<BlockSolverType::PoseMatrixType> LinearSolverType; // 线性求解器类型
      // 梯度下降方法,可以从GN, LM, DogLeg 中选
      auto solver = new g2o::OptimizationAlgorithmGaussNewton(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
      g2o::SparseOptimizer optimizer;     // 图模型
      optimizer.setAlgorithm(solver);   // 设置求解器
      optimizer.setVerbose(true);       // 打开调试输出
    
      // vertex
      VertexPose *vertex_pose = new VertexPose(); // camera vertex_pose
      vertex_pose->setId(0);
      vertex_pose->setEstimate(Sophus::SE3d());
      optimizer.addVertex(vertex_pose);
    
      // K
      Eigen::Matrix3d K_eigen;
      K_eigen <<
              K.at<double>(0, 0), K.at<double>(0, 1), K.at<double>(0, 2),
        K.at<double>(1, 0), K.at<double>(1, 1), K.at<double>(1, 2),
        K.at<double>(2, 0), K.at<double>(2, 1), K.at<double>(2, 2);
    
      // edges
      int index = 1;
      for (size_t i = 0; i < points_2d.size(); ++i) {
        auto p2d = points_2d[i];
        auto p3d = points_3d[i];
        EdgeProjection *edge = new EdgeProjection(p3d, K_eigen);
        edge->setId(index);
        edge->setVertex(0, vertex_pose);
        edge->setMeasurement(p2d);
        edge->setInformation(Eigen::Matrix2d::Identity());
        optimizer.addEdge(edge);
        index++;
      }
    
      chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
      optimizer.setVerbose(true);
      optimizer.initializeOptimization();
      optimizer.optimize(10);
      chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
      chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
      cout << "optimization costs time: " << time_used.count() << " seconds." << endl;
      cout << "pose estimated by g2o =\n" << vertex_pose->estimate().matrix() << endl;
      pose = vertex_pose->estimate();
    }
    
    

    相关文章

      网友评论

          本文标题:7.BA优化中的单节点高斯牛顿方程推导以及g2o写法

          本文链接:https://www.haomeiwen.com/subject/mvganrtx.html