美文网首页
C++实现 生产者消费者模型

C++实现 生产者消费者模型

作者: analanxingde | 来源:发表于2018-08-19 12:33 被阅读124次

condition_variable条件变量可以用来实现线程同步,它必须与互斥量mutex配合使用。
条件变量适用场景:一个线程先对某一条件进行判断, 如果条件不满足则进入等待, 条件满足的时候, 该线程被通知条件满足, 继续执行任务
在wait()之前,必须先lock相关联的mutex, 因为假如目标条件未满足,wait()实际上会unlock该mutex, 然后block,在目标条件满足后再重新lock该mutex, 然后返回
线程同步的方式:临界区,互斥量,信号量,事件
使用条件变量实现生产者消费者的简单例子如下:

#include <iostream>           
#include <queue>
#include <thread>             
#include <mutex> 
#include <unistd.h>             
#include <condition_variable> 
using namespace std;

mutex mtx;
condition_variable produce, consume;  // 条件变量是一种同步机制,要和mutex以及lock一起使用

queue<int> q;     // shared value by producers and consumers, which is the critical section
int maxSize = 20;

void consumer() 
{
    while (true)
    {
        //this_thread::sleep_for(chrono::milliseconds(1000));
        sleep(1);//包含在unistd.h头文件中,Sleep包含在windows.h中
        unique_lock<mutex> lck(mtx);                        
        while(q.size()==0)
        {
            consume.wait(lck);             //condition_variable.wait()锁至满足while条件不满足 
        }
        //consume.wait(lck, [] {return q.size() != 0; });     // wait(block) consumer until q.size() != 0 is true

        cout << "consumer " << this_thread::get_id() << ": ";
        q.pop();
        cout << q.size() << '\n';

        produce.notify_all();                               // nodity(wake up) producer when q.size() != maxSize is true
       lck.unlock();
    }
}

void producer(int id)
{
    while (true)
    {
        //this_thread::sleep_for(chrono::milliseconds(900));      // producer is a little faster than consumer  
        sleep(1);//  
        unique_lock<mutex> lck(mtx);
        while(q.size() == maxSize)
        {
            produce.wait(lck);
        }
       // produce.wait(lck, [] {return q.size() != maxSize; });   // wait(block) producer until q.size() != maxSize is true

        cout << "-> producer " << this_thread::get_id() << ": ";
        q.push(id);
        cout << q.size() << '\n';

        consume.notify_all();                                   // notify(wake up) consumer when q.size() != 0 is true
        lck.unlock();
    }
}

int main()
{
    thread consumers[2], producers[2];

    // spawn 2 consumers and 2 producers:
    for (int i = 0; i < 2; ++i)
    {
        consumers[i] = thread(consumer);
        producers[i] = thread(producer, i + 1);  //thread:第一个参数是task任务,第二个参数是task函数的参数 
    }

    // join them back: (in this program, never join...)
    for (int i = 0; i < 2; ++i)
    {
        producers[i].join();
        consumers[i].join();
    }

    system("pause");
    return 0;
}

下面实现了维护了缓冲区的结构体,并每次返回相应的位置,可以循环写入的生产者消费者模型:

#include <unistd.h>

#include <cstdlib>
#include <condition_variable>
#include <iostream>
#include <mutex>
#include <thread>

static const int kItemRepositorySize  = 10; // Item buffer size.
static const int kItemsToProduce  = 1000;   // How many items we plan to produce.

struct ItemRepository {
    int item_buffer[kItemRepositorySize]; // 产品缓冲区, 配合 read_position 和 write_position 模型环形队列.
    size_t read_position; // 消费者读取产品位置.
    size_t write_position; // 生产者写入产品位置.
    std::mutex mtx; // 互斥量,保护产品缓冲区
    std::condition_variable repo_not_full; // 条件变量, 指示产品缓冲区不为满.
    std::condition_variable repo_not_empty; // 条件变量, 指示产品缓冲区不为空.
} gItemRepository; // 产品库全局变量, 生产者和消费者操作该变量.

typedef struct ItemRepository ItemRepository;


void ProduceItem(ItemRepository *ir, int item)
{
    std::unique_lock<std::mutex> lock(ir->mtx);
    while(((ir->write_position + 1) % kItemRepositorySize)
        == ir->read_position) { // item buffer is full, just wait here.
        std::cout << "Producer is waiting for an empty slot...\n";
        (ir->repo_not_full).wait(lock); // 生产者等待"产品库缓冲区不为满"这一条件发生.
    }

    (ir->item_buffer)[ir->write_position] = item; // 写入产品.
    (ir->write_position)++; // 写入位置后移.

    if (ir->write_position == kItemRepositorySize) // 写入位置若是在队列最后则重新设置为初始位置.
        ir->write_position = 0;

    (ir->repo_not_empty).notify_all(); // 通知消费者产品库不为空.
    lock.unlock(); // 解锁.
}

int ConsumeItem(ItemRepository *ir)
{
    int data;
    std::unique_lock<std::mutex> lock(ir->mtx);
    // item buffer is empty, just wait here.
    while(ir->write_position == ir->read_position) {
        std::cout << "Consumer is waiting for items...\n";
        (ir->repo_not_empty).wait(lock); // 消费者等待"产品库缓冲区不为空"这一条件发生.
    }

    data = (ir->item_buffer)[ir->read_position]; // 读取某一产品
    (ir->read_position)++; // 读取位置后移

    if (ir->read_position >= kItemRepositorySize) // 读取位置若移到最后,则重新置位.
        ir->read_position = 0;

    (ir->repo_not_full).notify_all(); // 通知消费者产品库不为满.
    lock.unlock(); // 解锁.

    return data; // 返回产品.
}


void ProducerTask() // 生产者任务
{
    for (int i = 1; i <= kItemsToProduce; ++i) {
        // sleep(1);
        std::cout << "Produce the " << i << "^th item..." << std::endl;
        ProduceItem(&gItemRepository, i); // 循环生产 kItemsToProduce 个产品.
    }
}

void ConsumerTask() // 消费者任务
{
    static int cnt = 0;
    while(1) {
        sleep(1);
        int item = ConsumeItem(&gItemRepository); // 消费一个产品.
        std::cout << "Consume the " << item << "^th item" << std::endl;
        if (++cnt == kItemsToProduce) break; // 如果产品消费个数为 kItemsToProduce, 则退出.
    }
}

void InitItemRepository(ItemRepository *ir)
{
    ir->write_position = 0; // 初始化产品写入位置.
    ir->read_position = 0; // 初始化产品读取位置.
}

int main()
{
    InitItemRepository(&gItemRepository);
    std::thread producer(ProducerTask); // 创建生产者线程.
    std::thread consumer(ConsumerTask); // 创建消费之线程.
    producer.join();
    consumer.join();
    return 0;
}

知识点

  • condition_variable条件变量线程同步与mutex互斥变量配合使用

每个线程的同步互斥控制流程如下:
A. 进入后加互斥锁
unique_lock<mutex> lck(mtx);
B.判断此时是否能进行读写,能则立刻进行生产或消费,如不能则等待且释放互斥锁,等到能够生产消费时,再加锁进行生产消费操作。操作结束后通知生产者或者消费者,然后进入D。
while(q.size() == maxSize) {produce.wait(lck);} task();consume.notify_all();
D.释放互斥锁
lck.unlock()

  • c++17中新加入了scope_lock:可以设置除了该模块之后自动解锁,不必设置unlock。
  • C++11中加入了新的atomic原子性,可以用来进行互斥操作。

相关文章

网友评论

      本文标题:C++实现 生产者消费者模型

      本文链接:https://www.haomeiwen.com/subject/mwcqiftx.html