前言
社区在Flink 1.12版本通过FLIP-146提出了增强Flink SQL DynamicTableSource/Sink接口的动议,其中的一个主要工作就是让它们支持独立设置并行度。很多Sink都已经可以配置sink.parallelism
参数(见FLINK-19937),但Source还没动静。这是因为Source一直以来有两种并行的标准,一是传统的流式SourceFunction
与批式InputFormat
,二是原生支持流批一体的FLIP-27 Source
,并且Connector之间的实现并不统一。
笔者最近在Flink钉群闲逛时,经常看到如下图所示的发言,可见大家对Source(主要是Kafka Source)支持独立设置并行度的需求比较急切。


本文就来基于1.13.0版本实现该需求,注意此版本的SQL Kafka Source尚未迁移到FLIP-27。这项改进已经过验证,可以在生产环境使用,但仍属于过渡方案,故不会向社区发起PR。
实现ParallelismProvider
ScanTableSource
的运行时逻辑需要由ScanTableSource.ScanRuntimeProvider
来提供,一共有5种,如下图所示。

显然我们要修改SourceFunctionProvider
,让它实现FLIP-146定义的ParallelismProvider
接口,表示它支持独立设置并行度。代码很简单:
@PublicEvolving
public interface SourceFunctionProvider extends ScanTableSource.ScanRuntimeProvider, ParallelismProvider {
/** Helper method for creating a static provider. */
static SourceFunctionProvider of(SourceFunction<RowData> sourceFunction, boolean isBounded) {
return new SourceFunctionProvider() {
@Override
public SourceFunction<RowData> createSourceFunction() {
return sourceFunction;
}
@Override
public boolean isBounded() {
return isBounded;
}
};
}
/** Helper method for creating a static provider with a provided parallelism. */
static SourceFunctionProvider of(SourceFunction<RowData> sourceFunction, boolean isBounded, Integer sourceParallelism) {
return new SourceFunctionProvider() {
@Override
public SourceFunction<RowData> createSourceFunction() {
return sourceFunction;
}
@Override
public boolean isBounded() {
return isBounded;
}
@Override
public Optional<Integer> getParallelism() {
return Optional.ofNullable(sourceParallelism);
}
};
}
/** Creates a {@link SourceFunction} instance. */
SourceFunction<RowData> createSourceFunction();
}
添加scan.parallelism参数
在o.a.f.table.factories.FactoryUtil
中添加:
public static final ConfigOption<Integer> SCAN_PARALLELISM =
ConfigOptions.key("scan.parallelism")
.intType()
.noDefaultValue()
.withDescription(
"Defines a custom parallelism for the scan source. "
+ "By default, if this option is not defined, the planner will derive the parallelism "
+ "for each statement individually by also considering the global configuration.");
修改Kafka Connector
首先修改KafkaDynamicSource
:
- 在构造方法中添加
@Nullable Integer parallelism
及相关的代码; -
getScanRuntimeProvider()
方法的最后:
return SourceFunctionProvider.of(kafkaConsumer, false, parallelism);
- 在
copy()
/equals()
/hashCode()
方法内加上parallelism
。
然后修改KafkaDynamicTableFactory
,加入SCAN_PARALLELISM
参数,以及使用带并行度的KafkaDynamicSource
构造方法,不再赘述。
修改Source物理执行节点
负责使ScanTableSource
发挥作用的物理执行节点为CommonExecTableSourceScan
,注意到它的translateToPlanInternal()
方法中,对不同类型的ScanRuntimeProvider
分别做了处理。我们找到SourceFunctionProvider
对应的那个判断分支,加上与并行度相关的代码。
if (provider instanceof SourceFunctionProvider) {
SourceFunction<RowData> sourceFunction =
((SourceFunctionProvider) provider).createSourceFunction();
DataStreamSource<RowData> streamSource = env.addSource(
sourceFunction, operatorName, outputTypeInfo);
final int confParallelism = streamSource.getParallelism();
final int sourceParallelism = deriveSourceParallelism(
(ParallelismProvider) provider, confParallelism);
Transformation<RowData> transformation = streamSource.getTransformation();
transformation.setParallelism(sourceParallelism);
return transformation;
}
private int deriveSourceParallelism(
ParallelismProvider parallelismProvider, int confParallelism) {
final Optional<Integer> parallelismOptional = parallelismProvider.getParallelism();
if (parallelismOptional.isPresent()) {
int sourceParallelism = parallelismOptional.get();
if (sourceParallelism <= 0) {
throw new TableException(
String.format(
"Table: %s configured source parallelism: "
+ "%s should not be less than zero or equal to zero",
tableSourceSpec.getObjectIdentifier().asSummaryString(),
sourceParallelism));
}
return sourceParallelism;
} else {
return confParallelism;
}
}
大功告成?
将全局并行度设为10,用一条简单的SQL语句测试一下:
SELECT siteId, COUNT(orderId)
FROM rtdw_dwd.kafka_order_done_log /*+ OPTIONS('scan.parallelism'='5') */
WHERE mainSiteId = 10029
GROUP BY siteId;

emm,看起来似乎不太对,为什么Source后面的Calc
节点并行度也变成了5?这是因为Calc
的并行度默认以输入流的并行度决定,所以我们还要提供强制打断算子链的选项,让Calc
能够恢复全局并行度。
在ExecutionConfigOptions
中加入一个参数table.exec.source.force-break-chain
:
@Documentation.TableOption(execMode = Documentation.ExecMode.STREAMING)
public static final ConfigOption<Boolean> TABLE_EXEC_SOURCE_FORCE_BREAK_CHAIN =
key("table.exec.source.force-break-chain")
.booleanType()
.defaultValue(false)
.withDescription(
"Indicates whether to forcefully break the operator chain after the source.");
然后在上面改过的CommonExecTableSourceScan
代码中,加入对此参数的判断,如果为true
,则调用disableChaining()
方法断链。
final Configuration config = planner.getTableConfig().getConfiguration();
if (config.get(ExecutionConfigOptions.TABLE_EXEC_SOURCE_FORCE_BREAK_CHAIN)) {
streamSource.disableChaining();
}
最后不要忘了修改CommonExecCalc
。如果它的输入是CommonExecTableSourceScan
且上述参数生效,那么就将它的并行度直接置为PARALLELISM_DEFAULT
,即全局并行度。
@Override
protected Transformation<RowData> translateToPlanInternal(PlannerBase planner) {
final ExecEdge inputEdge = getInputEdges().get(0);
final Transformation<RowData> inputTransform =
(Transformation<RowData>) inputEdge.translateToPlan(planner);
final CodeGeneratorContext ctx = /* ... */;
final CodeGenOperatorFactory<RowData> substituteStreamOperator = /* ... */;
int parallelism = inputTransform.getParallelism();
if (inputEdge.getSource() instanceof CommonExecTableSourceScan) {
final Configuration config = planner.getTableConfig().getConfiguration();
if (config.get(ExecutionConfigOptions.TABLE_EXEC_SOURCE_FORCE_BREAK_CHAIN)) {
parallelism = ExecutionConfig.PARALLELISM_DEFAULT;
}
}
return new OneInputTransformation<>(
inputTransform,
getDescription(),
substituteStreamOperator,
InternalTypeInfo.of(getOutputType()),
parallelism);
}
再试一试,结果符合预期:

提供强制断链的参数还有一重好处,即能够在SQL作业并行度变化时安全地恢复现场。举个例子,若Source并行度和全局并行度起初都是5,但是在作业运行过程中发现下游处理速度不够,而将全局并行度提升到10的话,那么原有的checkpoint将无法使用——因为并行度的变化导致了作业拓扑变化。如果我们在一开始就将table.exec.source.force-break-chain
设为true
,那么上面所述的情况将不会造成困扰。
The End
民那晚安晚安。
网友评论