下面是一个使用完整的tensorflow思路实现的线性回归代码
import tensorflowas tf
import numpy
import matplotlib.pyplotas plt
rng = numpy.random
# 设置训练参数
learning_rate =0.01
training_epochs =10000
display_step =50
# 生成训练数据
train_X = numpy.asarray([3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1])
train_Y = numpy.asarray([1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3])
n_samples = train_X.shape[0]
# 占位节点
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
# 图参数设置。注意要初始化要为浮点数
W = tf.Variable(20.0, name="weight")
b = tf.Variable(20.0, name="bias")
# 只有一个图节点
pred = tf.add(tf.multiply(X, W), b)
# 损失函数
cost = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples)
# 优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# 初始化参数
init = tf.global_variables_initializer()
# 进入图
with tf.Session()as sess:
# 图初始化
sess.run(init)
# 训练图
for epochin range(training_epochs):
for (x, y)in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# 显示生成过程中的信息
if (epoch +1) % display_step ==0:
c = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Epoch:", '%04d' % (epoch +1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# 显示训练结果
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
# 测试数据集
test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
print("Testing... (Mean square loss Comparison)")
testing_cost = sess.run(
tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]),
feed_dict={X: test_X, Y: test_Y})# same function as cost above
print("Testing cost=", testing_cost)
print("Absolute mean square loss difference:", abs(
training_cost - testing_cost))
plt.plot(test_X, test_Y, 'bo', label='Testing data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
网友评论