美文网首页Deep Learning
part1-3.7为什么需要非线性激活函数

part1-3.7为什么需要非线性激活函数

作者: 透明的红萝卜123 | 来源:发表于2019-02-05 23:41 被阅读0次

这是神经网络正向传播的方程,现在我们去掉激活函数g,然后令a^([1])=z^([1]),或者我们也可以令g(z)=z,这个有时被叫做线性激活函数(更学术点的名字是恒等激励函数,因为它们就是把输入值输出)。

我们稍后会谈到深度网络,有很多层的神经网络,很多隐藏层。事实证明,如果你使用线性激活函数或者没有使用一个激活函数,那么无论你的神经网络有多少层一直在做的只是计算线性函数,所以不如直接去掉全部隐藏层。在我们的简明案例中,事实证明如果你在隐藏层用线性激活函数,在输出层用sigmoid函数,那么这个模型的复杂度和没有任何隐藏层的标准Logistic回归是一样的,如果你愿意的话,可以证明一下。

在这里线性隐层一点用也没有,因为这两个线性函数的组合本身就是线性函数,所以除非你引入非线性,否则你无法计算更有趣的函数,即使你的网络层数再多也不行;只有一个地方可以使用线性激活函数------g(z)=z,就是你在做机器学习中的回归问题。y 是一个实数,举个例子,比如你想预测房地产价格,y 就不是二分类任务0或1,而是一个实数,从0到正无穷。如果y 是个实数,那么在输出层用线性激活函数也许可行,你的输出也是一个实数,从负无穷到正无穷。

总而言之,不能在隐藏层用线性激活函数,可以用ReLU或者tanh或者leaky ReLU或者其他的非线性激活函数,唯一可以用线性激活函数的通常就是输出层;除了这种情况,会在隐层用线性函数的,除了一些特殊情况,比如与压缩有关的,那方面在这里将不深入讨论。在这之外,在隐层使用线性激活函数非常少见。因为房价都是非负数,所以我们也可以在输出层使用ReLU函数这样你的^y都大于等于0。

相关文章

网友评论

    本文标题:part1-3.7为什么需要非线性激活函数

    本文链接:https://www.haomeiwen.com/subject/mylbsqtx.html