美文网首页
今日学术视野(2019.3.9)

今日学术视野(2019.3.9)

作者: ZQtGe6 | 来源:发表于2019-03-09 05:11 被阅读121次

    cond-mat.stat-mech - 统计数学
    cs.AI - 人工智能
    cs.CL - 计算与语言
    cs.CR - 加密与安全
    cs.CV - 机器视觉与模式识别
    cs.CY - 计算与社会
    cs.DC - 分布式、并行与集群计算
    cs.GT - 计算机科学与博弈论
    cs.HC - 人机接口
    cs.IR - 信息检索
    cs.IT - 信息论
    cs.LG - 自动学习
    cs.MA - 多代理系统
    cs.NE - 神经与进化计算
    cs.NI - 网络和互联网体系结构
    cs.RO - 机器人学
    cs.SI - 社交网络与信息网络
    eess.SP - 信号处理
    math.RT - 表象理论
    math.ST - 统计理论
    physics.comp-ph - 计算物理学
    physics.data-an - 数据分析、 统计和概率
    physics.soc-ph - 物理学与社会
    q-bio.TO - 组织和器官
    q-fin.CP -计算金融学
    quant-ph - 量子物理
    stat.AP - 应用统计
    stat.CO - 统计计算
    stat.ME - 统计方法论
    stat.ML - (统计)机器学习

    • [cond-mat.stat-mech]Machine learning method for single trajectory characterization
    • [cs.AI]Can Sophisticated Dispatching Strategy Acquired by Reinforcement Learning? - A Case Study in Dynamic Courier Dispatching System
    • [cs.AI]Composite Event Recognition for Maritime Monitoring: Industry Paper
    • [cs.AI]Concurrent Meta Reinforcement Learning
    • [cs.AI]Lifted Weight Learning of Markov Logic Networks Revisited
    • [cs.CL]A Character-Level Approach to the Text Normalization Problem Based on a New Causal Encoder
    • [cs.CL]Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic and Language Models
    • [cs.CL]Arabic natural language processing: An overview
    • [cs.CL]Creation and Evaluation of Datasets for Distributional Semantics Tasks in the Digital Humanities Domain
    • [cs.CL]Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing
    • [cs.CL]Learning to Speak and Act in a Fantasy Text Adventure Game
    • [cs.CL]Multi-Instance Learning for End-to-End Knowledge Base Question Answering
    • [cs.CL]Neural Language Modeling with Visual Features
    • [cs.CL]Option Comparison Network for Multiple-choice Reading Comprehension
    • [cs.CL]Predicting Research Trends From Arxiv
    • [cs.CL]SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA
    • [cs.CL]Sentence Embedding Alignment for Lifelong Relation Extraction
    • [cs.CL]Small-world networks for summarization of biomedical articles
    • [cs.CR]Attack Graph Obfuscation
    • [cs.CR]Detection of Advanced Malware by Machine Learning Techniques
    • [cs.CV]Active Scene Learning
    • [cs.CV]Alternating Phase Projected Gradient Descent with Generative Priors for Solving Compressive Phase Retrieval
    • [cs.CV]Attack Type Agnostic Perceptual Enhancement of Adversarial Images
    • [cs.CV]CE-Net: Context Encoder Network for 2D Medical Image Segmentation
    • [cs.CV]COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis
    • [cs.CV]Clear Skies Ahead: Towards Real-Time Automatic Sky Replacement in Video
    • [cs.CV]Correction of Electron Back-scattered Diffraction datasets using an evolutionary algorithm
    • [cs.CV]Discovering Visual Patterns in Art Collections with Spatially-consistent Feature Learning
    • [cs.CV]Exploit fully automatic low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data
    • [cs.CV]Graphical Contrastive Losses for Scene Graph Generation
    • [cs.CV]Hair Segmentation on Time-of-Flight RGBD Images
    • [cs.CV]IMEXnet: A Forward Stable Deep Neural Network
    • [cs.CV]Label Embedded Dictionary Learning for Image Classification
    • [cs.CV]Learning deep neural networks in blind deblurring framework
    • [cs.CV]Novel quantitative indicators of digital ophthalmoscopy image quality
    • [cs.CV]RAVEN: A Dataset for Relational and Analogical Visual rEasoNing
    • [cs.CV]Robust Semantic Segmentation By Dense Fusion Network On Blurred VHR Remote Sensing Images
    • [cs.CV]SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction
    • [cs.CV]Stratified Labeling for Surface Consistent Parallax Correction and Occlusion Completion
    • [cs.CV]Synthetic Human Model Dataset for Skeleton Driven Non-rigid Motion Tracking and 3D Reconstruction
    • [cs.CV]Temporal Registration in Application to In-utero MRI Time Series
    • [cs.CV]Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention
    • [cs.CV]Understanding Ancient Coin Images
    • [cs.CV]Using DP Towards A Shortest Path Problem-Related Application
    • [cs.CV]Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification from the Bottom Up
    • [cs.CY]Engaging Users with Educational Games: The Case of Phishing
    • [cs.CY]Seniors' Media Preference for Receiving Internet Security Information: A Pilot Study
    • [cs.DC]An Introduction to hpxMP -- A Modern OpenMP Implementation Leveraging Asynchronous Many-Tasking System
    • [cs.DC]Invariant Safety for Distributed Applications
    • [cs.DC]Neighborhood Mutual Remainder: Self-Stabilizing Implementation of Look-Compute-Move Robots (Extended Abstract)
    • [cs.DC]Towards a Uniform Architecture for the Efficient Implementation of 2D and 3D Deconvolutional Neural Networks on FPGAs
    • [cs.GT]Selling Multiple Items via Social Networks
    • [cs.HC]Integrating Artificial and Human Intelligence for Efficient Translation
    • [cs.IR]ViTOR: Learning to Rank Webpages Based on Visual Features
    • [cs.IT]A General Construction and Encoder Implementation of Polar Codes
    • [cs.IT]A Scalable Max-Consensus Protocol For Noisy Ultra-Dense Networks
    • [cs.IT]Deep Learning based End-to-End Wireless Communication Systems with Conditional GAN as Unknown Channel
    • [cs.IT]Deep Learning for Channel Coding via Neural Mutual Information Estimation
    • [cs.IT]Deep Learning for UL/DL Channel Calibration in Generic Massive MIMO Systems
    • [cs.IT]IoT-U: Cellular Internet-of-Things Networks over Unlicensed Spectrum
    • [cs.IT]Joint Dynamic Pricing and Radio Resource Allocation Framework for IoT Services
    • [cs.IT]Non-Stationarities in Extra-Large Scale Massive MIMO
    • [cs.IT]On the security of a Loidreau's rank metric code based encryption scheme
    • [cs.IT]Rigorous Analysis of Spectral Methods for Random Orthogonal Matrices
    • [cs.LG]A Rank-1 Sketch for Matrix Multiplicative Weights
    • [cs.LG]Accurate inference of crowdsourcing properties when using efficient allocation strategies
    • [cs.LG]Analysis Dictionary Learning: An Efficient and Discriminative Solution
    • [cs.LG]Doubly Aligned Incomplete Multi-view Clustering
    • [cs.LG]Efficient and Effective Quantization for Sparse DNNs
    • [cs.LG]Fast Graph Representation Learning with PyTorch Geometric
    • [cs.LG]Fast Parallel Algorithms for Feature Selection
    • [cs.LG]GanDef: A GAN based Adversarial Training Defense for Neural Network Classifier
    • [cs.LG]Generative Graph Convolutional Network for Growing Graphs
    • [cs.LG]Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences
    • [cs.LG]Interpretable Deep Learning in Drug Discovery
    • [cs.LG]Limiting Network Size within Finite Bounds for Optimization
    • [cs.LG]Mean-field Analysis of Batch Normalization
    • [cs.LG]Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
    • [cs.LG]Only sparsity based loss function for learning representations
    • [cs.LG]Out-domain examples for generative models
    • [cs.LG]Quantum Latent Semantic Analysis
    • [cs.LG]RLOC: Neurobiologically Inspired Hierarchical Reinforcement Learning Algorithm for Continuous Control of Nonlinear Dynamical Systems
    • [cs.LG]Robust and Communication-Efficient Federated Learning from Non-IID Data
    • [cs.LG]Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
    • [cs.LG]The Privacy Blanket of the Shuffle Model
    • [cs.LG]The Variational Predictive Natural Gradient
    • [cs.LG]Using World Models for Pseudo-Rehearsal in Continual Learning
    • [cs.LG]When random search is not enough: Sample-Efficient and Noise-Robust Blackbox Optimization of RL Policies
    • [cs.MA]Convergence of Multi-Agent Learning with a Finite Step Size in General-Sum Games
    • [cs.NE]A Novel Neural Network Structure Constructed according to Logical Relations
    • [cs.NE]jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics
    • [cs.NI]Allocation of Computation-Intensive Graph Jobs over Vehicular Clouds
    • [cs.RO]A Lane-Change Path Planner and its application with a monocular camera
    • [cs.RO]An Inverting-Tube Clutching Contractile Soft Pneumatic Actuator
    • [cs.RO]Deep Visual MPC-Policy Learning for Navigation
    • [cs.RO]Locating Transparent Objects to Millimetre Accuracy
    • [cs.RO]Robust Execution of Contact-Rich Motion Plans by Hybrid Force-Velocity Control
    • [cs.RO]Towards Better Human Robot Collaboration with Robust Plan Recognition and Trajectory Prediction
    • [cs.SI]HEAT: Hyperbolic Embedding of Attributed Networks
    • [cs.SI]Learning Graphs from Noisy Epidemic Cascades
    • [cs.SI]Structure-Preserving Community In A Multilayer Network: Definition, Detection, And Analysis
    • [cs.SI]Twitter Speaks: A Case of National Disaster Situational Awareness
    • [eess.SP]Scattering Mechanisms and Modeling for Terahertz Wireless Communications
    • [math.RT]Reparameterizing Distributions on Lie Groups
    • [math.ST]Integral Transform Methods in Goodness-of-Fit Testing, II: The Wishart Distributions
    • [math.ST]Nonparametric Change Point Detection in Regression
    • [math.ST]Solutions to Sparse Multilevel Matrix Problems
    • [math.ST]Tutorial: Deriving The Efficient Influence Curve for Large Models
    • [physics.comp-ph]Deep learning observables in computational fluid dynamics
    • [physics.data-an]Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm
    • [physics.soc-ph]Trip Centrality: walking on a temporal multiplex with non-instantaneous link travel time
    • [q-bio.TO]Characterization of Posidonia Oceanica Seagrass Aerenchyma through Whole Slide Imaging: A Pilot Study
    • [q-fin.CP]Learning the population dynamics of technical trading strategies
    • [quant-ph]Quantum hardness of learning shallow classical circuits
    • [stat.AP]Estimating a pressure dependent thermal conductivity coefficient with applications in food technology
    • [stat.AP]Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics
    • [stat.CO]Estimation and uncertainty quantification for the output from quantum simulators
    • [stat.ME]A comment on "New non-parametric inferences for low-income proportions" by Shan Luo and Gengsheng Qin
    • [stat.ME]Relaxing the Assumptions of Knockoffs by Conditioning
    • [stat.ME]Simultaneous Prediction Intervals for Small Area Parameter
    • [stat.ML]Adversarial Mixup Resynthesizers
    • [stat.ML]Deep Random Splines for Point Process Intensity Estimation
    • [stat.ML]GRATIS: GeneRAting TIme Series with diverse and controllable characteristics
    • [stat.ML]Multi-output Bus Travel Time Prediction with Convolutional LSTM Neural Network
    • [stat.ML]On Convergence Rate of the Gaussian Belief Propagation Algorithm for Markov Networks
    • [stat.ML]On Transformations in Stochastic Gradient MCMC

    ·····································

    • [cond-mat.stat-mech]Machine learning method for single trajectory characterization
    Gorka Muñoz-Gil, Miguel Angel Garcia-March, Carlo Manzo, José D. Martín-Guerrero, Maciej Lewenstein
    http://arxiv.org/abs/1903.02850v1

    • [cs.AI]Can Sophisticated Dispatching Strategy Acquired by Reinforcement Learning? - A Case Study in Dynamic Courier Dispatching System
    Yujie Chen, Yu Qian, Yichen Yao, Zili Wu, Rongqi Li, Yinzhi Zhou, Haoyuan Hu, Yinghui Xu
    http://arxiv.org/abs/1903.02716v1

    • [cs.AI]Composite Event Recognition for Maritime Monitoring: Industry Paper
    Manolis Pitsikalis, Alexander Artikis, Richard Dreo, Cyril Ray, Elena Camossi, Anne-Laure Jousselme
    http://arxiv.org/abs/1903.03078v1

    • [cs.AI]Concurrent Meta Reinforcement Learning
    Emilio Parisotto, Soham Ghosh, Sai Bhargav Yalamanchi, Varsha Chinnaobireddy, Yuhuai Wu, Ruslan Salakhutdinov
    http://arxiv.org/abs/1903.02710v1

    • [cs.AI]Lifted Weight Learning of Markov Logic Networks Revisited
    Ondrej Kuzelka, Vyacheslav Kungurtsev
    http://arxiv.org/abs/1903.03099v1

    • [cs.CL]A Character-Level Approach to the Text Normalization Problem Based on a New Causal Encoder
    Adrián Javaloy Bornás, Ginés García Mateos
    http://arxiv.org/abs/1903.02642v1

    • [cs.CL]Active and Semi-Supervised Learning in ASR: Benefits on the Acoustic and Language Models
    Thomas Drugman, Janne Pylkkonen, Reinhard Kneser
    http://arxiv.org/abs/1903.02852v1

    • [cs.CL]Arabic natural language processing: An overview
    Imane Guellil, Houda Saâdane, Faical Azouaou, Billel Gueni, Damien Nouvel
    http://arxiv.org/abs/1903.02784v1

    • [cs.CL]Creation and Evaluation of Datasets for Distributional Semantics Tasks in the Digital Humanities Domain
    Gerhard Wohlgenannt, Ariadna Barinova, Dmitry Ilvovsky, Ekaterina Chernyak
    http://arxiv.org/abs/1903.02671v1

    • [cs.CL]Imposing Label-Relational Inductive Bias for Extremely Fine-Grained Entity Typing
    Wenhan Xiong, Jiawei Wu, Deren Lei, Mo Yu, Shiyu Chang, Xiaoxiao Guo, William Yang Wang
    http://arxiv.org/abs/1903.02591v1

    • [cs.CL]Learning to Speak and Act in a Fantasy Text Adventure Game
    Jack Urbanek, Angela Fan, Siddharth Karamcheti, Saachi Jain, Samuel Humeau, Emily Dinan, Tim Rocktäschel, Douwe Kiela, Arthur Szlam, Jason Weston
    http://arxiv.org/abs/1903.03094v1

    • [cs.CL]Multi-Instance Learning for End-to-End Knowledge Base Question Answering
    Mengxi Wei, Yifan He, Qiong Zhang, Luo Si
    http://arxiv.org/abs/1903.02652v1

    • [cs.CL]Neural Language Modeling with Visual Features
    Antonios Anastasopoulos, Shankar Kumar, Hank Liao
    http://arxiv.org/abs/1903.02930v1

    • [cs.CL]Option Comparison Network for Multiple-choice Reading Comprehension
    Qiu Ran, Peng Li, Weiwei Hu, Jie Zhou
    http://arxiv.org/abs/1903.03033v1

    • [cs.CL]Predicting Research Trends From Arxiv
    Steffen Eger, Chao Li, Florian Netzer, Iryna Gurevych
    http://arxiv.org/abs/1903.02831v1

    • [cs.CL]SemEval 2019 Task 1: Cross-lingual Semantic Parsing with UCCA
    Daniel Hershcovich, Zohar Aizenbud, Leshem Choshen, Elior Sulem, Ari Rappoport, Omri Abend
    http://arxiv.org/abs/1903.02953v1

    • [cs.CL]Sentence Embedding Alignment for Lifelong Relation Extraction
    Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu Chang, William Yang Wang
    http://arxiv.org/abs/1903.02588v1

    • [cs.CL]Small-world networks for summarization of biomedical articles
    Milad Moradi
    http://arxiv.org/abs/1903.02861v1

    • [cs.CR]Attack Graph Obfuscation
    Rami Puzis, Hadar Polad, Bracha Shapira
    http://arxiv.org/abs/1903.02601v1

    • [cs.CR]Detection of Advanced Malware by Machine Learning Techniques
    Sanjay Sharma, C. Rama Krishna, Sanjay K. Sahay
    http://arxiv.org/abs/1903.02966v1

    • [cs.CV]Active Scene Learning
    Erelcan Yanik, Tevfik Metin Sezgin
    http://arxiv.org/abs/1903.02832v1

    • [cs.CV]Alternating Phase Projected Gradient Descent with Generative Priors for Solving Compressive Phase Retrieval
    Rakib Hyder, Viraj Shah, Chinmay Hegde, M. Salman Asif
    http://arxiv.org/abs/1903.02707v1

    • [cs.CV]Attack Type Agnostic Perceptual Enhancement of Adversarial Images
    Bilgin Aksoy, Alptekin Temizel
    http://arxiv.org/abs/1903.03029v1

    • [cs.CV]CE-Net: Context Encoder Network for 2D Medical Image Segmentation
    Zaiwang Gu, Jun Cheng, Huazhu Fu, Kang Zhou, Huaying Hao, Yitian Zhao, Tianyang Zhang, Shenghua Gao, Jiang Liu
    http://arxiv.org/abs/1903.02740v1

    • [cs.CV]COIN: A Large-scale Dataset for Comprehensive Instructional Video Analysis
    Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng, Danyang Zhang, Lili Zhao, Jiwen Lu, Jie Zhou
    http://arxiv.org/abs/1903.02874v1

    • [cs.CV]Clear Skies Ahead: Towards Real-Time Automatic Sky Replacement in Video
    Tavi Halperin, Harel Cain, Ofir Bibi, Michael Werman
    http://arxiv.org/abs/1903.02582v1

    • [cs.CV]Correction of Electron Back-scattered Diffraction datasets using an evolutionary algorithm
    Florian Strub, Marie-Agathe Charpagne, Tresa M. Pollock
    http://arxiv.org/abs/1903.02982v1

    • [cs.CV]Discovering Visual Patterns in Art Collections with Spatially-consistent Feature Learning
    Xi Shen, Alexei A. Efros, Aubry Mathieu
    http://arxiv.org/abs/1903.02678v1

    • [cs.CV]Exploit fully automatic low-level segmented PET data for training high-level deep learning algorithms for the corresponding CT data
    Christina Gsaxner, Peter M. Roth, Jürgen Wallner, Jan Egger
    http://arxiv.org/abs/1903.02871v1

    • [cs.CV]Graphical Contrastive Losses for Scene Graph Generation
    Ji Zhang, Kevin J. Shih, Ahmed Elgammal, Andrew Tao, Bryan Catanzaro
    http://arxiv.org/abs/1903.02728v1

    • [cs.CV]Hair Segmentation on Time-of-Flight RGBD Images
    Yuanxi Ma, Cen Wan, Guli Zhang, Qilei Jiang, Shiying Li, Jingyi Yu
    http://arxiv.org/abs/1903.02775v1

    • [cs.CV]IMEXnet: A Forward Stable Deep Neural Network
    Eldad Haber, Keegan Lensink, Eran Triester, Lars Ruthotto
    http://arxiv.org/abs/1903.02639v1

    • [cs.CV]Label Embedded Dictionary Learning for Image Classification
    Shuai Shao, Yan-Jiang Wang, Bao-Di Liu, Weifeng Liu
    http://arxiv.org/abs/1903.03087v1

    • [cs.CV]Learning deep neural networks in blind deblurring framework
    Junde Wu, Xiaoguang Di, Jiehao Huang, Yu Zhang
    http://arxiv.org/abs/1903.02731v1

    • [cs.CV]Novel quantitative indicators of digital ophthalmoscopy image quality
    Chris von Csefalvay
    http://arxiv.org/abs/1903.02695v1

    • [cs.CV]RAVEN: A Dataset for Relational and Analogical Visual rEasoNing
    Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, Song-Chun Zhu
    http://arxiv.org/abs/1903.02741v1

    • [cs.CV]Robust Semantic Segmentation By Dense Fusion Network On Blurred VHR Remote Sensing Images
    Yi Peng, Shihao Sun, Yining Pan, Ruirui Li
    http://arxiv.org/abs/1903.02702v1

    • [cs.CV]SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction
    Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, Nanning Zheng
    http://arxiv.org/abs/1903.02793v1

    • [cs.CV]Stratified Labeling for Surface Consistent Parallax Correction and Occlusion Completion
    Jie Chen, Lap-Pui Chau, Junhui Hou
    http://arxiv.org/abs/1903.02688v1

    • [cs.CV]Synthetic Human Model Dataset for Skeleton Driven Non-rigid Motion Tracking and 3D Reconstruction
    Shafeeq Elanattil, Peyman Moghadam
    http://arxiv.org/abs/1903.02679v1

    • [cs.CV]Temporal Registration in Application to In-utero MRI Time Series
    Ruizhi Liao, Esra A. Turk, Miaomiao Zhang, Jie Luo, Elfar Adalsteinsson, P. Ellen Grant, Polina Golland
    http://arxiv.org/abs/1903.02959v1

    • [cs.CV]Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention
    Richard Droste, Yifan Cai, Harshita Sharma, Pierre Chatelain, Lior Drukker, Aris T. Papageorghiou, J. Alison Noble
    http://arxiv.org/abs/1903.02974v1

    • [cs.CV]Understanding Ancient Coin Images
    Jessica Cooper, Ognjen Arandjelovic
    http://arxiv.org/abs/1903.02665v1

    • [cs.CV]Using DP Towards A Shortest Path Problem-Related Application
    Jianhao Jiao, Rui Fan, Han Ma, Ming Liu
    http://arxiv.org/abs/1903.02765v1

    • [cs.CV]Weakly Supervised Complementary Parts Models for Fine-Grained Image Classification from the Bottom Up
    Weifeng Ge, Xiangru Lin, Yizhou Yu
    http://arxiv.org/abs/1903.02827v1

    • [cs.CY]Engaging Users with Educational Games: The Case of Phishing
    Matt Dixon, Nalin Asanka Gamagedara Arachchilage, James Nicholson
    http://arxiv.org/abs/1903.03019v1

    • [cs.CY]Seniors' Media Preference for Receiving Internet Security Information: A Pilot Study
    Yousra Javed, Boyd Davis, Mohamed Shehab
    http://arxiv.org/abs/1903.02618v1

    • [cs.DC]An Introduction to hpxMP -- A Modern OpenMP Implementation Leveraging Asynchronous Many-Tasking System
    Tianyi Zhang, Shahrzad Shirzad, Patrick Diehl, R. Tohid, Weile Wei, Hartmut Kaiser
    http://arxiv.org/abs/1903.03023v1

    • [cs.DC]Invariant Safety for Distributed Applications
    Sreeja Nair, Gustavo Petri, Marc Shapiro
    http://arxiv.org/abs/1903.02759v1

    • [cs.DC]Neighborhood Mutual Remainder: Self-Stabilizing Implementation of Look-Compute-Move Robots (Extended Abstract)
    Shlomi Dolev, Sayaka Kamei, Yoshiaki Katayama, Fukuhito Ooshita, Koichi Wada
    http://arxiv.org/abs/1903.02843v1

    • [cs.DC]Towards a Uniform Architecture for the Efficient Implementation of 2D and 3D Deconvolutional Neural Networks on FPGAs
    Deguang Wang, Junzhong Shen, Mei Wen, Chunyuan Zhang
    http://arxiv.org/abs/1903.02550v1

    • [cs.GT]Selling Multiple Items via Social Networks
    Dengji Zhao, Bin Li, Junping Xu, Dong Hao, Nicholas R. Jennings
    http://arxiv.org/abs/1903.02703v1

    • [cs.HC]Integrating Artificial and Human Intelligence for Efficient Translation
    Nico Herbig, Santanu Pal, Josef van Genabith, Antonio Krüger
    http://arxiv.org/abs/1903.02978v1

    • [cs.IR]ViTOR: Learning to Rank Webpages Based on Visual Features
    Bram van den Akker, Ilya Markov, Maarten de Rijke
    http://arxiv.org/abs/1903.02939v1

    • [cs.IT]A General Construction and Encoder Implementation of Polar Codes
    Wei Song, Yifei Shen, Liping Li, Kai Niu, Chuan Zhang
    http://arxiv.org/abs/1903.02899v1

    • [cs.IT]A Scalable Max-Consensus Protocol For Noisy Ultra-Dense Networks
    Navneet Agrawal, Matthias Frey, Slawomir Stanczak
    http://arxiv.org/abs/1903.02885v1

    • [cs.IT]Deep Learning based End-to-End Wireless Communication Systems with Conditional GAN as Unknown Channel
    Hao Ye, Le Liang, Geoffrey Ye Li, Biing-Hwang Fred Juang
    http://arxiv.org/abs/1903.02551v1

    • [cs.IT]Deep Learning for Channel Coding via Neural Mutual Information Estimation
    Rick Fritschek, Rafael F. Schaefer, Gerhard Wunder
    http://arxiv.org/abs/1903.02865v1

    • [cs.IT]Deep Learning for UL/DL Channel Calibration in Generic Massive MIMO Systems
    Chongwen Huang, George C. Alexandropoulos, Alessio Zappone, Chau Yuen, Mérouane Debbah
    http://arxiv.org/abs/1903.02875v1

    • [cs.IT]IoT-U: Cellular Internet-of-Things Networks over Unlicensed Spectrum
    Hongliang Zhang, Boya Di, Kaigui Bian, Lingyang Song
    http://arxiv.org/abs/1903.02686v1

    • [cs.IT]Joint Dynamic Pricing and Radio Resource Allocation Framework for IoT Services
    Mohammad Moltafet, Atefeh Rezaei, Nader Mokari, Mohammad Reza Javan, Hamid Saeedi, Hossein Pishro Nik
    http://arxiv.org/abs/1903.02928v1

    • [cs.IT]Non-Stationarities in Extra-Large Scale Massive MIMO
    Elisabeth De Carvalho, Anum Ali, Abolfazl Amiri, Marko Angjelichinoski, Robert W. Heath Jr
    http://arxiv.org/abs/1903.03085v1

    • [cs.IT]On the security of a Loidreau's rank metric code based encryption scheme
    Daniel Coggia, Alain Couvreur
    http://arxiv.org/abs/1903.02933v1

    • [cs.IT]Rigorous Analysis of Spectral Methods for Random Orthogonal Matrices
    Rishabh Dudeja, Milad Bakhshizadeh, Junjie Ma, Arian Maleki
    http://arxiv.org/abs/1903.02676v1

    • [cs.LG]A Rank-1 Sketch for Matrix Multiplicative Weights
    Yair Carmon, John C. Duchi, Aaron Sidford, Kevin Tian
    http://arxiv.org/abs/1903.02675v1

    • [cs.LG]Accurate inference of crowdsourcing properties when using efficient allocation strategies
    Abigail Hotaling, James P. Bagrow
    http://arxiv.org/abs/1903.03104v1

    • [cs.LG]Analysis Dictionary Learning: An Efficient and Discriminative Solution
    Wen Tang, Ashkan Panahi, Hamid Krim, Liyi Dai
    http://arxiv.org/abs/1903.03058v1

    • [cs.LG]Doubly Aligned Incomplete Multi-view Clustering
    Menglei Hu, Songcan Chen
    http://arxiv.org/abs/1903.02785v1

    • [cs.LG]Efficient and Effective Quantization for Sparse DNNs
    Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins, Cheng-Zhong Xu
    http://arxiv.org/abs/1903.03046v1

    • [cs.LG]Fast Graph Representation Learning with PyTorch Geometric
    Matthias Fey, Jan Eric Lenssen
    http://arxiv.org/abs/1903.02428v2

    • [cs.LG]Fast Parallel Algorithms for Feature Selection
    Sharon Qian, Yaron Singer
    http://arxiv.org/abs/1903.02656v1

    • [cs.LG]GanDef: A GAN based Adversarial Training Defense for Neural Network Classifier
    Guanxiong Liu, Issa Khalil, Abdallah Khreishah
    http://arxiv.org/abs/1903.02585v1

    • [cs.LG]Generative Graph Convolutional Network for Growing Graphs
    Da Xu, Chuanwei Ruan, Kamiya Motwani, Evren Korpeoglu, Sushant Kumar, Kannan Achan
    http://arxiv.org/abs/1903.02640v1

    • [cs.LG]Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences
    Sandesh Ghimire, Prashnna Kumar Gyawali, Jwala Dhamala, John L Sapp, Milan Horacek, Linwei Wang
    http://arxiv.org/abs/1903.02948v1

    • [cs.LG]Interpretable Deep Learning in Drug Discovery
    Kristina Preuer, Günter Klambauer, Friedrich Rippmann, Sepp Hochreiter, Thomas Unterthiner
    http://arxiv.org/abs/1903.02788v1

    • [cs.LG]Limiting Network Size within Finite Bounds for Optimization
    Linu Pinto, Dr. Sasi Gopalan
    http://arxiv.org/abs/1903.02809v1

    • [cs.LG]Mean-field Analysis of Batch Normalization
    Mingwei Wei, James Stokes, David J Schwab
    http://arxiv.org/abs/1903.02606v1

    • [cs.LG]Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
    Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle
    http://arxiv.org/abs/1903.03096v1

    • [cs.LG]Only sparsity based loss function for learning representations
    Vivek Bakaraju, Kishore Reddy Konda
    http://arxiv.org/abs/1903.02893v1

    • [cs.LG]Out-domain examples for generative models
    Dario Pasquini, Marco Mingione, Massimo Bernaschi
    http://arxiv.org/abs/1903.02926v1

    • [cs.LG]Quantum Latent Semantic Analysis
    Fabio A. González, Juan C. Caicedo
    http://arxiv.org/abs/1903.03082v1

    • [cs.LG]RLOC: Neurobiologically Inspired Hierarchical Reinforcement Learning Algorithm for Continuous Control of Nonlinear Dynamical Systems
    Ekaterina Abramova, Luke Dickens, Daniel Kuhn, Aldo Faisal
    http://arxiv.org/abs/1903.03064v1

    • [cs.LG]Robust and Communication-Efficient Federated Learning from Non-IID Data
    Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, Wojciech Samek
    http://arxiv.org/abs/1903.02891v1

    • [cs.LG]Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
    Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, Roger Grosse
    http://arxiv.org/abs/1903.03088v1

    • [cs.LG]The Privacy Blanket of the Shuffle Model
    Borja Balle, James Bell, Adria Gascon, Kobbi Nissim
    http://arxiv.org/abs/1903.02837v1

    • [cs.LG]The Variational Predictive Natural Gradient
    Da Tang, Rajesh Ranganath
    http://arxiv.org/abs/1903.02984v1

    • [cs.LG]Using World Models for Pseudo-Rehearsal in Continual Learning
    Nicholas Ketz, Soheil Kolouri, Praveen Pilly
    http://arxiv.org/abs/1903.02647v1

    • [cs.LG]When random search is not enough: Sample-Efficient and Noise-Robust Blackbox Optimization of RL Policies
    Krzysztof Choromanski, Aldo Pacchiano, Jack Parker-Holder, Jasmine Hsu, Atil Iscen, Deepali Jain, Vikas Sindhwani
    http://arxiv.org/abs/1903.02993v1

    • [cs.MA]Convergence of Multi-Agent Learning with a Finite Step Size in General-Sum Games
    Xinliang Song, Tonghan Wang, Chongjie Zhang
    http://arxiv.org/abs/1903.02868v1

    • [cs.NE]A Novel Neural Network Structure Constructed according to Logical Relations
    Wang Gang
    http://arxiv.org/abs/1903.02683v1

    • [cs.NE]jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics
    Antonio Benitez-Hidalgo, Antonio J. Nebro, Jose Garcia-Nieto, Izaskun Oregi, Javier Del Ser
    http://arxiv.org/abs/1903.02915v1

    • [cs.NI]Allocation of Computation-Intensive Graph Jobs over Vehicular Clouds
    Minghui LiWang, Seyyedali Hosseinalipour, Zhibin Gao, Yuliang Tang, Lianfen Huang, Huaiyu Dai
    http://arxiv.org/abs/1903.02724v1

    • [cs.RO]A Lane-Change Path Planner and its application with a monocular camera
    Yunlong Huang
    http://arxiv.org/abs/1903.02552v1

    • [cs.RO]An Inverting-Tube Clutching Contractile Soft Pneumatic Actuator
    Wyatt Felt
    http://arxiv.org/abs/1903.02725v1

    • [cs.RO]Deep Visual MPC-Policy Learning for Navigation
    Noriaki Hirose, Fei Xia, Roberto Martin-Martin, Amir Sadeghian, Silvio Savarese
    http://arxiv.org/abs/1903.02749v1

    • [cs.RO]Locating Transparent Objects to Millimetre Accuracy
    Nicholas Adrian, Quang-Cuong Pham
    http://arxiv.org/abs/1903.02908v1

    • [cs.RO]Robust Execution of Contact-Rich Motion Plans by Hybrid Force-Velocity Control
    Yifan Hou, Matthew T. Mason
    http://arxiv.org/abs/1903.02715v1

    • [cs.RO]Towards Better Human Robot Collaboration with Robust Plan Recognition and Trajectory Prediction
    Yujiao Cheng, Liting Sun, Masayoshi Tomizuka
    http://arxiv.org/abs/1903.02199v2

    • [cs.SI]HEAT: Hyperbolic Embedding of Attributed Networks
    David McDonald, Shan He
    http://arxiv.org/abs/1903.03036v1

    • [cs.SI]Learning Graphs from Noisy Epidemic Cascades
    Jessica Hoffmann, Constantine Caramanis
    http://arxiv.org/abs/1903.02650v1

    • [cs.SI]Structure-Preserving Community In A Multilayer Network: Definition, Detection, And Analysis
    Abhishek Santra, Kanthi Sannappa Komar, Sanjukta Bhowmick, Sharma Chakravarthy
    http://arxiv.org/abs/1903.02641v1

    • [cs.SI]Twitter Speaks: A Case of National Disaster Situational Awareness
    Amir Karami, Vishal Shah, Reza Vaezi, Amit Bansal
    http://arxiv.org/abs/1903.02706v1

    • [eess.SP]Scattering Mechanisms and Modeling for Terahertz Wireless Communications
    Shihao Ju, Syed Hashim Ali Shah, Muhammad Affan Javed, Jun Li, Girish Palteru, Jyotish Robin, Yunchou Xing, Ojas Kanhere, Theodore S. Rappaport
    http://arxiv.org/abs/1903.02657v1

    • [math.RT]Reparameterizing Distributions on Lie Groups
    Luca Falorsi, Pim de Haan, Tim R. Davidson, Patrick Forré
    http://arxiv.org/abs/1903.02958v1

    • [math.ST]Integral Transform Methods in Goodness-of-Fit Testing, II: The Wishart Distributions
    Elena Hadjicosta, Donald Richards
    http://arxiv.org/abs/1903.02653v1

    • [math.ST]Nonparametric Change Point Detection in Regression
    Valeriy Avanesov
    http://arxiv.org/abs/1903.02603v1

    • [math.ST]Solutions to Sparse Multilevel Matrix Problems
    Tui H. Nolan, Matt P. Wand
    http://arxiv.org/abs/1903.03089v1

    • [math.ST]Tutorial: Deriving The Efficient Influence Curve for Large Models
    Jonathan Levy
    http://arxiv.org/abs/1903.01706v2

    • [physics.comp-ph]Deep learning observables in computational fluid dynamics
    Kjetil O. Lye, Siddhartha Mishra, Deep Ray
    http://arxiv.org/abs/1903.03040v1

    • [physics.data-an]Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm
    Marie-Agathe Charpagne, Florian Strub, Tresa M. Pollocka
    http://arxiv.org/abs/1903.02988v1

    • [physics.soc-ph]Trip Centrality: walking on a temporal multiplex with non-instantaneous link travel time
    Silvia Zaoli, Piero Mazzarisi, Fabrizio Lillo
    http://arxiv.org/abs/1903.02815v1

    • [q-bio.TO]Characterization of Posidonia Oceanica Seagrass Aerenchyma through Whole Slide Imaging: A Pilot Study
    Olivier Debeir, Justine Allard, Christine Decaestecker, Jean-Pierre Hermand
    http://arxiv.org/abs/1903.03044v1

    • [q-fin.CP]Learning the population dynamics of technical trading strategies
    Nicholas Murphy, Tim Gebbie
    http://arxiv.org/abs/1903.02228v1

    • [quant-ph]Quantum hardness of learning shallow classical circuits
    Srinivasan Arunachalam, Alex B. Grilo, Aarthi Sundaram
    http://arxiv.org/abs/1903.02840v1

    • [stat.AP]Estimating a pressure dependent thermal conductivity coefficient with applications in food technology
    Marcos A Capistran, Juan Antonio Infante del Rio
    http://arxiv.org/abs/1903.02830v1

    • [stat.AP]Semi-Supervised Non-Parametric Bayesian Modelling of Spatial Proteomics
    Oliver M. Crook, Kathryn S. Lilley, Laurent Gatto, Paul D. W. Kirk
    http://arxiv.org/abs/1903.02909v1

    • [stat.CO]Estimation and uncertainty quantification for the output from quantum simulators
    Ryan Bennink, Ajay Jasra, Kody J. H. Law, Pavel Lougovski
    http://arxiv.org/abs/1903.02964v1

    • [stat.ME]A comment on "New non-parametric inferences for low-income proportions" by Shan Luo and Gengsheng Qin
    Wojciech Zieliński
    http://arxiv.org/abs/1903.02973v1

    • [stat.ME]Relaxing the Assumptions of Knockoffs by Conditioning
    Dongming Huang, Lucas Janson
    http://arxiv.org/abs/1903.02806v1

    • [stat.ME]Simultaneous Prediction Intervals for Small Area Parameter
    Katarzyna Reluga, María José Lombardía, Stefan Andreas Sperlich
    http://arxiv.org/abs/1903.02774v1

    • [stat.ML]Adversarial Mixup Resynthesizers
    Christopher Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R Devon Hjelm, Christopher Pal
    http://arxiv.org/abs/1903.02709v1

    • [stat.ML]Deep Random Splines for Point Process Intensity Estimation
    Gabriel Loaiza-Ganem, John P. Cunningham
    http://arxiv.org/abs/1903.02610v1

    • [stat.ML]GRATIS: GeneRAting TIme Series with diverse and controllable characteristics
    Yanfei Kang, Rob J Hyndman, Feng Li
    http://arxiv.org/abs/1903.02787v1

    • [stat.ML]Multi-output Bus Travel Time Prediction with Convolutional LSTM Neural Network
    Niklas Christoffer Petersen, Filipe Rodrigues, Francisco Camara Pereira
    http://arxiv.org/abs/1903.02791v1

    • [stat.ML]On Convergence Rate of the Gaussian Belief Propagation Algorithm for Markov Networks
    Zhaorong Zhang, Minyue Fu
    http://arxiv.org/abs/1903.02658v1

    • [stat.ML]On Transformations in Stochastic Gradient MCMC
    Soma Yokoi, Takuma Otsuka, Issei Sato
    http://arxiv.org/abs/1903.02750v1

    相关文章

      网友评论

          本文标题:今日学术视野(2019.3.9)

          本文链接:https://www.haomeiwen.com/subject/mymjpqtx.html