美文网首页
handler机制--Message类型

handler机制--Message类型

作者: 牛晓伟 | 来源:发表于2022-11-26 22:49 被阅读0次

这节主要介绍Message都有哪些类型以及作用。(以下分析都是基于android 12代码)

同步Message

同步Message自不必多说,默认创建的Message都是同步的。

同步屏障Message

同步屏障Message是什么?

同步屏障Message可以这样理解:创建这种类型的Message并且把它放入MessageQueue的mMessages链表中,当执行到这种类型的Message后,它会阻止它后面的所有同步Message执行(即使同步Message到了应该执行的时间),只允许它后面的异步Message执行
执行同步屏障Message的代码在next方法中
MessageQueue#next

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                //msg.target == null 代表是同步屏障Message
                if (msg != null && msg.target == null) {
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    //下面的逻辑是从链表中依次去查询是异步类型的Message,找到则执行后面逻辑,否则不执行任何同步Message
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                
                //如果msg存在则执行
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    //否则把nextPollTimeoutMillis设置为-1代表需要等待MessageQueue中放入Message,否则一直等待
                    nextPollTimeoutMillis = -1;
                }

                省略代码......
            }

            省略代码......
        }
    }

因此同步屏障Message是需要和异步Message配合才有意义。

同步屏障Message的使用

创建同步屏障Message
MessageQueue#postSyncBarrier

    public int postSyncBarrier() {
        return postSyncBarrier(SystemClock.uptimeMillis());
    }

    private int postSyncBarrier(long when) {
        // Enqueue a new sync barrier token.
        // We don't need to wake the queue because the purpose of a barrier is to stall it.
        synchronized (this) {
            //创建一个token,因为可能存在创建多个syncBarrier的情况,因此token就代表当前创建的syncBarrier
            final int token = mNextBarrierToken++;
            final Message msg = Message.obtain();
            msg.markInUse();
            msg.when = when;
            //token赋值给msg的arg1
            msg.arg1 = token;

            Message prev = null;
            Message p = mMessages;
            //根据when值 找到syncBarrier需要存放的位置
            if (when != 0) {
                while (p != null && p.when <= when) {
                    prev = p;
                    p = p.next;
                }
            }
            if (prev != null) { // invariant: p == prev.next
                msg.next = p;
                prev.next = msg;
            } else {
                msg.next = p;
                mMessages = msg;
            }

            返回token
            return token;
        }
    }

调用postSyncBarrier方法就可以创建一个同步屏障Message,并且返回一个token,这个token需要保存,因为在移除的时候需要用到。同步屏障Message和普通的Message没啥区别,除了Message的target属性为null。因此如果Message的target为null就可以断定这个Message是同步屏障Message。

移除同步屏障Message
因为这种类型的Message需要创建者移除,不移除那就会导致所有的同步Message没法执行。移除方法如下:
MessageQueue#removeSyncBarrier

    //token:创建时候返回的token
    public void removeSyncBarrier(int token) {
        // Remove a sync barrier token from the queue.
        // If the queue is no longer stalled by a barrier then wake it.
        synchronized (this) {
            Message prev = null;
            Message p = mMessages;
            //根据token和target==null来查找同步屏障Message
            while (p != null && (p.target != null || p.arg1 != token)) {
                prev = p;
                p = p.next;
            }
            if (p == null) {
                throw new IllegalStateException("The specified message queue synchronization "
                        + " barrier token has not been posted or has already been removed.");
            }
            final boolean needWake;
            if (prev != null) {
                prev.next = p.next;
                needWake = false;
            } else {
                mMessages = p.next;
                needWake = mMessages == null || mMessages.target != null;
            }

            //把Message回收
            p.recycleUnchecked();

            // If the loop is quitting then it is already awake.
            // We can assume mPtr != 0 when mQuitting is false.
            //需要唤醒,则去唤醒
            if (needWake && !mQuitting) {
                nativeWake(mPtr);
            }
        }
    }

如上调用removeSyncBarrier方法参数为创建时候返回的token就可以把同步屏障Message移除。

异步Message

异步Message:这里的异步容易让人产生误解,总以为这种类型的Message是可以并行执行多个的意思,其实不是。它和同步Message,同步屏障Message一样也都是按照Message的when属性值的大小在链表中排列的。

创建异步的方法特别简单,只需要调用Message的setAsynchronous方法即可。

异步Message需要和同步屏障Message结合使用,它俩谁也离不了谁。如果没有同步屏障Message,那异步Message和同步Message没有任何区别。

异步Message和同步屏障Message的组合主要是解决这类问题:比如当前有一些Message,它们的优先级要高于其他的Message,必须先执行完这批Message后才能执行优先级低的Message。其中一个应用场景就是在绘制view的时候用到,如下部分代码:
ViewRootImpl#scheduleTraversals

    @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.R, trackingBug = 170729553)
    void scheduleTraversals() {
        if (!mTraversalScheduled) {
            mTraversalScheduled = true;
            //创建同步屏障Message
            mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();
            mChoreographer.postCallback(
                    Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
            notifyRendererOfFramePending();
            pokeDrawLockIfNeeded();
        }
    }

上面代码在绘制之前创建了同步屏障Message,这样把当前所有可执行的同步Message都给阻止掉,因为绘制的优先级最高,假如让一些同步Message执行,若它们耗时,这完全会影响整个绘制流程,你说是绘制重要还是啥重要,整个界面都一片空白了,那肯定会被用户骂的。

Choreographer#onVsync

    public void onVsync(long timestampNanos, long physicalDisplayId, int frame,
                VsyncEventData vsyncEventData) {
        try {
            省略代码......
            Message msg = Message.obtain(mHandler, this);
            //设置Message为异步Message
            msg.setAsynchronous(true);
            mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
        } finally {
            Trace.traceEnd(Trace.TRACE_TAG_VIEW);
        }
    }

在Choreographer的onVsync方法中,收到vsync信号后,为了让绘制工作能高优先级执行,把Message设置为异步,因为ViewRootImpl的scheduleTraversals方法中已经加入同步屏障Message了,所以高优先级执行绘制操作。

idle ”Message“

idle ”Message“:它其实不是一个Message,可以把它看成一个伪Message,在MessageQueue的next方法进行第一次循环的时候,尝试去执行所有的idle ”Message“。
相应的代码如下:
MessageQueue#next

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        //pendingIdleHandlerCount赋值为-1 代表只有第一次循环的时候才去执行idle Message
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                
                省略代码......

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                //进入循环之前,给pendingIdleHandlerCount赋值了-1,因此pendingIdleHandlerCount< 0并且没有可执行的Message时候,开始准备执行idle Message
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    //mIdleHandlers存放了所有的idle Message
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }

                //没有可执行的idle Message,则不往下面执行
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            //依次循环执行idle Message
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                //拿出IdleHandler
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    //调用idler的queueIdle方法,该方法会返回一个boolean值,代表是否移除:false则需要移除;否则不用移除
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        //需要移除,则从mIdleHandlers移除这个idler
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            //把pendingIdleHandlerCount赋值为0,代表下一次就不用执行idle Message了
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }

它对应的类如下:(其实是一个接口)
MessageQueue#IdleHandler

    public static interface IdleHandler {
        /**
         * Called when the message queue has run out of messages and will now
         * wait for more.  Return true to keep your idle handler active, false
         * to have it removed.  This may be called if there are still messages
         * pending in the queue, but they are all scheduled to be dispatched
         * after the current time.
         */
        boolean queueIdle();
    }

添加一个idle ”Message“的方法如下:
MessageQueue#addIdleHandler

    public void addIdleHandler(@NonNull IdleHandler handler) {
        if (handler == null) {
            throw new NullPointerException("Can't add a null IdleHandler");
        }
        synchronized (this) {
            mIdleHandlers.add(handler);
        }
    }

总结

到此Message的类型就介绍完毕,每种Message都有自己适用的场景,大家可以根据需要来使用相应的Message

相关文章

网友评论

      本文标题:handler机制--Message类型

      本文链接:https://www.haomeiwen.com/subject/mzchfdtx.html