美文网首页
监督学习

监督学习

作者: 琎神Fire | 来源:发表于2017-08-31 09:06 被阅读0次

【输入--->模型--->输出】

监督学习的目的在于找到最好的这样的模型,由假设空间中N多个模型中产生。

分为学习过程和预测过程:

       学习过程是系统通过给定的训练数据集得到一个模型,一边向此模型中输入数据,用输出数据与训练数据集中的已知数据相互比较,一边不断优化模型,使二者的差足够小,最后用条件概率密度函数或决策函数表示模型。

       预测过程是向已得到的模型输入数据,然后得到输出数据。


统计学三要素:【方法=模型+策略+算法】

模型在监督学习中就是要学习的条件概率密度函数或者决策函数,其假设空间就是所有可能的函数的集合,可以由一个参数向量决定的函数组表示。有条件概率密度函数和决策函数两种表示方法。

策略,就是考虑用什么准则来学习或选择最优模型

——损失函数,度量模型一次预测的好坏。是非负实值函数,值越小,模型越好。

——风险函数,度量模型平均预测的好坏。损失函数的期望就是风险函数或期望损失,是模型关于联合概率分布的平均损失,但是风险函数中的P(X,Y)联合分布是未知的,所以又提出经验风险。

——经验风险是模型关于训练数据集的平均损失,而期望风险是模型关于联合概率分布的平均损失,所以当训练数据集中的样本为无穷时,经验风险趋于期望风险。问题则转向经验风险最小化。

——经验风险最小化,当样本容量足够大时,效果显著。但是样本有限时就会出现偏差,出现“过拟合”现象。

——结构风险最小化,防止“过拟合”现象,由经验风险和模型复杂度构成,二者同时小时,就能有较好的预测。

总:监督学习的问题就变成了经验风险和结构风险最优化的问题,经验风险函数和结构风险函数就是目标函数。

注:梯度下降(gd)是最小化风险函数、损失函数的一种常用方法,随机梯度下降和批量梯度下降是两种迭代求解思路。


辅助链接:

01【梯度下降算法

02【随机梯度下降和批量梯度下降的公式对比、实现对比

算法,确定了策略便可寻找合适的算法来解决问题了。

相关文章

  • 11.25 统计学习方法

    1.2监督学习 统计学习包括监督学习,非监督学习,半监督学习及强化学习。 监督学习(supervised lear...

  • 监督学习——学习笔记

    前言 统计学习包括监督学习、非监督学习、半监督学习及强化学习。监督学习 (supervised learning)...

  • K-Means聚类算法

    机器学习的算法主要分为监督学习和无监督学习监督学习。 监督学习(supervised learning),利用样本...

  • 统计学习

    统计学习 统计学习包括监督学习,非监督学习,半监督学习以及强化学习。 监督学习 监督学习的任务是学习一个模型,使模...

  • 统计学习方法概论

    这部分主要了解关于统计学习的一些重要概念:统计学习包括:监督学习、半监督学习、非监督学习、强化学习。监督学习:监督...

  • Types of Machine Learning: Super

    1. 监督学习 or 无监督学习 2. 监督学习 2.1 分类 2.2 回归 2.3 监督学习:分类 & 回归...

  • ml chapter1机器学习的分类

    1,监督学习:数据与标签的2,非监督学习:只有数据没有标签3,半监督学习:监督学习+半监督学习4,强化学习:训练中...

  • 机器学习分类

    机器学习通常分为四类 监督学习 无监督学习 半监督学习 强化学习 监督学习 监督学习是从标记的训练数据来推断一个功...

  • 机器学习的分类

    分类: 目前机器学习主流分为:监督学习,无监督学习,强化学习。 监督学习: 监督学习可分为“回归”和“分类”问题。...

  • 分类

    机器学习方法:监督学习, 半监督学习,无监督学习,强化学习。 监督学习:判别模型,生成模型。 判别模型:条件随机场...

网友评论

      本文标题:监督学习

      本文链接:https://www.haomeiwen.com/subject/nanxlxtx.html