美文网首页
Spark Partitioner 源码分析

Spark Partitioner 源码分析

作者: wangdy12 | 来源:发表于2018-03-28 15:48 被阅读0次

Partitioner

首先RDD类型为K/V对的数据才会有分区器,用来确定数据按照Key值划分到哪一个分区,其定义如下:

abstract class Partitioner extends Serializable {
  def numPartitions: Int //分区总数
  def getPartition(key: Any): Int //key对应的partition索引
}

Spark内部提供了HashPartitioner和RangePartitioner两种分区策略

HashPartitioner

通过key的hashCode,对numPartitions取模,如果key比较均匀,能够大致确保每个partition中数据量均匀分布

class HashPartitioner(partitions: Int) extends Partitioner {
  require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")

  def numPartitions: Int = partitions

  def getPartition(key: Any): Int = key match {
    case null => 0
    case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
  }

  override def equals(other: Any): Boolean = other match {
    case h: HashPartitioner =>
      h.numPartitions == numPartitions
    case _ =>
      false
  }

  override def hashCode: Int = numPartitions
}

RangePartitioner

先进行一次采样,如果不够均匀,再次采样,每次采样都会使用collect()方法,所以最坏情况下运行到sortByKey时,需要额外启动2个job,对应的stage要跑三次才能完成

大致步骤:

  • 计算每个分区的采样数目
  • 蓄水池采样,输出rdd元素的总数,以及每个分区对应的元素个数和采样结果(collect()会触发Job)
  • 计算总体的采样率
  • 如果分区的采样率过低,标记该分区,需要重新采样
  • 采样率合格,每个采样的到的key对应一个权重,数值为该分区采样率的倒数,即分区元素数目 / 采样数目
  • 对不合格的分区重新采样(collect()会触发Job),这一次会直接设定采样率为总体采样率,同样,每个采样的到的key对应一个权重
  • 完成采样,获取总权重,计算出每个分区对应的权重
  • 对(key,权重)按照key排序,根据权重划分范围
class RangePartitioner[K : Ordering : ClassTag, V](
    partitions: Int,
    rdd: RDD[_ <: Product2[K, V]],
    private var ascending: Boolean = true,
    val samplePointsPerPartitionHint: Int = 20)
  extends Partitioner {
  def this(partitions: Int, rdd: RDD[_ <: Product2[K, V]], ascending: Boolean) = {
    this(partitions, rdd, ascending, samplePointsPerPartitionHint = 20)
  }

  private var ordering = implicitly[Ordering[K]]

  // An array of upper bounds for the first (partitions - 1) partitions
  private var rangeBounds: Array[K] = {
    if (partitions <= 1) {
      Array.empty
    } else {
      //总样本大小sampleSize,每个Partition取样20条,最多不超过1M
      val sampleSize = math.min(samplePointsPerPartitionHint.toDouble * partitions, 1e6)
      //过采样,总采样数目乘以系数3,假定每个输入分区的数据量大致均衡
      val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.length).toInt
      //通过蓄水池取样 返回RDD元素的总数,以及一个抽样数据的数组Array[(Int, Long, Array[K])]),对应为分区号,分区内的元素数目,该分区的取样数据
      val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition)
      if (numItems == 0L) {
        Array.empty
      } else {
        // 对包含过多元素的partition重新采样,确保采集到足够充分的数据
        // 平均采样率,实际采样率要高三倍
        val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0)
        val candidates = ArrayBuffer.empty[(K, Float)]
        val imbalancedPartitions = mutable.Set.empty[Int]
        sketched.foreach { case (idx, n, sample) =>
          //该Partition的元素数目过多,实际采样率低于fraction,记录
          if (fraction * n > sampleSizePerPartition) {
            imbalancedPartitions += idx
          } else {
            // 采样率达到要求,设定每个样本(键值Key)的权重 权重=分区元素总数/分区采样数,采样率的倒数
            val weight = (n.toDouble / sample.length).toFloat
            for (key <- sample) {
              candidates += ((key, weight))
            }
          }
        }
        if (imbalancedPartitions.nonEmpty) {
          // 以期望的采样概率重新采样不均匀的Partition
          // 创建分区修剪RDD,对采样不均匀的分区重新采样,并对样本设定权重
          val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains)
          val seed = byteswap32(-rdd.id - 1)
          val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect()
          val weight = (1.0 / fraction).toFloat
          //设定每个采样到的元素对应的权重,采样率的倒数
          candidates ++= reSampled.map(x => (x, weight))
        }
        // 决定分区的划分边界
        RangePartitioner.determineBounds(candidates, math.min(partitions, candidates.size))
      }
    }
  }
}

边界划分

依据候选中的权重划分分区,权重值可以理解为该Key值所代表的元素数目
返回一个数组,长度为partitions - 1,第i个元素作为第i个分区内元素key值的上界

  def determineBounds[K : Ordering : ClassTag](
      candidates: ArrayBuffer[(K, Float)],
      partitions: Int): Array[K] = {
    val ordering = implicitly[Ordering[K]]
    //依据Key进行排序,升序
    val ordered = candidates.sortBy(_._1)
    val numCandidates = ordered.size
    //计算出权重和,以及每个Partition的平均权重
    val sumWeights = ordered.map(_._2.toDouble).sum
    val step = sumWeights / partitions
    var cumWeight = 0.0
    var target = step
    val bounds = ArrayBuffer.empty[K]
    var i = 0
    var j = 0
    var previousBound = Option.empty[K]
    while ((i < numCandidates) && (j < partitions - 1)) {
      val (key, weight) = ordered(i)
      //权重累加
      cumWeight += weight
      //达到分割的目标值
      if (cumWeight >= target) {
        // 相同key值处于相同的Partition中,key值不同可以进行分割
        if (previousBound.isEmpty || ordering.gt(key, previousBound.get)) {
          bounds += key //记录边界
          target += step
          j += 1
          previousBound = Some(key)
        }
      }
      i += 1
    }
    bounds.toArray
  }

获取分区

getPartition,边界数目少于等于128,直接遍历比较key和边界数组,得到分区索引,否则使用二分查找获取分区位置,最后根据升序还是降序,返回相应的PartitionId

 private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]

  def getPartition(key: Any): Int = {
    val k = key.asInstanceOf[K]
    var partition = 0
    if (rangeBounds.length <= 128) {
      // If we have less than 128 partitions naive search
      while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
        partition += 1
      }
    } else {
      // Determine which binary search method to use only once.
      partition = binarySearch(rangeBounds, k)
      // binarySearch either returns the match location or -[insertion point]-1
      if (partition < 0) {
        partition = -partition-1
      }
      if (partition > rangeBounds.length) {
        partition = rangeBounds.length
      }
    }
    if (ascending) {
      partition
    } else {
      rangeBounds.length - partition
    }
  }

蓄水池取样 Reservoir Sampling

适用于从包含n个项目的集合中选取k个样本,其中n为一很大或未知的数量

数学原理:共有n个对象,将前k个对象放入“水库”,从k+1个对象开始,以k/(k+1)的概率选择该对象,以k/(k+2)的概率选择第k+2个对象,以此类推,以k/m的概率选择第m个对象(m>k)。如果m被选中,则随机替换水库中的一个对象。最终每个对象被选中的概率均为k/n

  /**
   * 对每个分区进行蓄水池采样,采样实际上会触发一个Job
   *
   * @param rdd 需要扫描的 RDD,只包含key值
   * @param sampleSizePerPartition 每个分区最大采样数目
   * @return (total number of items, an array of (partitionId, number of items, sample))
   */
  def sketch[K : ClassTag](
      rdd: RDD[K],
      sampleSizePerPartition: Int): (Long, Array[(Int, Long, Array[K])]) = {
    val shift = rdd.id 
    val sketched = rdd.mapPartitionsWithIndex { (idx, iter) =>
      val seed = byteswap32(idx ^ (shift << 16)) //随机种子
      val (sample, n) = SamplingUtils.reservoirSampleAndCount(
        iter, sampleSizePerPartition, seed)
      Iterator((idx, n, sample))
    }.collect()//触发Job
    val numItems = sketched.map(_._2).sum//各个分区元素数目之和
    (numItems, sketched)
  }

采样的核心方法,返回采样结果,以及输入数据总数

  def reservoirSampleAndCount[T: ClassTag](
      input: Iterator[T],
      k: Int,
      seed: Long = Random.nextLong())
    : (Array[T], Long) = {
    val reservoir = new Array[T](k) //蓄水池的大小为K
    //把前k个元素放入蓄水池中
    var i = 0
    while (i < k && input.hasNext) {
      val item = input.next()
      reservoir(i) = item
      i += 1
    }

    if (i < k) {
      // 如果输入数据量小于水池的大小k,截断数组直接返回
      val trimReservoir = new Array[T](i)
      System.arraycopy(reservoir, 0, trimReservoir, 0, i)
      (trimReservoir, i)
    } else {
      // 蓄水池已经填满,继续取样,根据概率决定是否进行替换已有采样数据
      var l = i.toLong
      val rand = new XORShiftRandom(seed)
      while (input.hasNext) {
        val item = input.next()
        l += 1
        //产生[0,l)类型为double的随机数
        val replacementIndex = (rand.nextDouble() * l).toLong
        //新的数据被选择的概率为k/l,替换对应索引位置的元素
        if (replacementIndex < k) {
          reservoir(replacementIndex.toInt) = item
        }
      }
      (reservoir, l)
    }
  }

相关文章

网友评论

      本文标题:Spark Partitioner 源码分析

      本文链接:https://www.haomeiwen.com/subject/nbpuqftx.html