Partitioner
首先RDD类型为K/V对的数据才会有分区器,用来确定数据按照Key值划分到哪一个分区,其定义如下:
abstract class Partitioner extends Serializable {
def numPartitions: Int //分区总数
def getPartition(key: Any): Int //key对应的partition索引
}
Spark内部提供了HashPartitioner和RangePartitioner两种分区策略
HashPartitioner
通过key的hashCode,对numPartitions取模,如果key比较均匀,能够大致确保每个partition中数据量均匀分布
class HashPartitioner(partitions: Int) extends Partitioner {
require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
def numPartitions: Int = partitions
def getPartition(key: Any): Int = key match {
case null => 0
case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
}
override def equals(other: Any): Boolean = other match {
case h: HashPartitioner =>
h.numPartitions == numPartitions
case _ =>
false
}
override def hashCode: Int = numPartitions
}
RangePartitioner
先进行一次采样,如果不够均匀,再次采样,每次采样都会使用collect()
方法,所以最坏情况下运行到sortByKey
时,需要额外启动2个job,对应的stage要跑三次才能完成
大致步骤:
- 计算每个分区的采样数目
- 蓄水池采样,输出rdd元素的总数,以及每个分区对应的元素个数和采样结果(
collect()
会触发Job) - 计算总体的采样率
- 如果分区的采样率过低,标记该分区,需要重新采样
- 采样率合格,每个采样的到的key对应一个权重,数值为该分区采样率的倒数,即分区元素数目 / 采样数目
- 对不合格的分区重新采样(
collect()
会触发Job),这一次会直接设定采样率为总体采样率,同样,每个采样的到的key对应一个权重 - 完成采样,获取总权重,计算出每个分区对应的权重
- 对(key,权重)按照key排序,根据权重划分范围
class RangePartitioner[K : Ordering : ClassTag, V](
partitions: Int,
rdd: RDD[_ <: Product2[K, V]],
private var ascending: Boolean = true,
val samplePointsPerPartitionHint: Int = 20)
extends Partitioner {
def this(partitions: Int, rdd: RDD[_ <: Product2[K, V]], ascending: Boolean) = {
this(partitions, rdd, ascending, samplePointsPerPartitionHint = 20)
}
private var ordering = implicitly[Ordering[K]]
// An array of upper bounds for the first (partitions - 1) partitions
private var rangeBounds: Array[K] = {
if (partitions <= 1) {
Array.empty
} else {
//总样本大小sampleSize,每个Partition取样20条,最多不超过1M
val sampleSize = math.min(samplePointsPerPartitionHint.toDouble * partitions, 1e6)
//过采样,总采样数目乘以系数3,假定每个输入分区的数据量大致均衡
val sampleSizePerPartition = math.ceil(3.0 * sampleSize / rdd.partitions.length).toInt
//通过蓄水池取样 返回RDD元素的总数,以及一个抽样数据的数组Array[(Int, Long, Array[K])]),对应为分区号,分区内的元素数目,该分区的取样数据
val (numItems, sketched) = RangePartitioner.sketch(rdd.map(_._1), sampleSizePerPartition)
if (numItems == 0L) {
Array.empty
} else {
// 对包含过多元素的partition重新采样,确保采集到足够充分的数据
// 平均采样率,实际采样率要高三倍
val fraction = math.min(sampleSize / math.max(numItems, 1L), 1.0)
val candidates = ArrayBuffer.empty[(K, Float)]
val imbalancedPartitions = mutable.Set.empty[Int]
sketched.foreach { case (idx, n, sample) =>
//该Partition的元素数目过多,实际采样率低于fraction,记录
if (fraction * n > sampleSizePerPartition) {
imbalancedPartitions += idx
} else {
// 采样率达到要求,设定每个样本(键值Key)的权重 权重=分区元素总数/分区采样数,采样率的倒数
val weight = (n.toDouble / sample.length).toFloat
for (key <- sample) {
candidates += ((key, weight))
}
}
}
if (imbalancedPartitions.nonEmpty) {
// 以期望的采样概率重新采样不均匀的Partition
// 创建分区修剪RDD,对采样不均匀的分区重新采样,并对样本设定权重
val imbalanced = new PartitionPruningRDD(rdd.map(_._1), imbalancedPartitions.contains)
val seed = byteswap32(-rdd.id - 1)
val reSampled = imbalanced.sample(withReplacement = false, fraction, seed).collect()
val weight = (1.0 / fraction).toFloat
//设定每个采样到的元素对应的权重,采样率的倒数
candidates ++= reSampled.map(x => (x, weight))
}
// 决定分区的划分边界
RangePartitioner.determineBounds(candidates, math.min(partitions, candidates.size))
}
}
}
}
边界划分
依据候选中的权重划分分区,权重值可以理解为该Key值所代表的元素数目
返回一个数组,长度为partitions - 1
,第i个元素作为第i个分区内元素key值的上界
def determineBounds[K : Ordering : ClassTag](
candidates: ArrayBuffer[(K, Float)],
partitions: Int): Array[K] = {
val ordering = implicitly[Ordering[K]]
//依据Key进行排序,升序
val ordered = candidates.sortBy(_._1)
val numCandidates = ordered.size
//计算出权重和,以及每个Partition的平均权重
val sumWeights = ordered.map(_._2.toDouble).sum
val step = sumWeights / partitions
var cumWeight = 0.0
var target = step
val bounds = ArrayBuffer.empty[K]
var i = 0
var j = 0
var previousBound = Option.empty[K]
while ((i < numCandidates) && (j < partitions - 1)) {
val (key, weight) = ordered(i)
//权重累加
cumWeight += weight
//达到分割的目标值
if (cumWeight >= target) {
// 相同key值处于相同的Partition中,key值不同可以进行分割
if (previousBound.isEmpty || ordering.gt(key, previousBound.get)) {
bounds += key //记录边界
target += step
j += 1
previousBound = Some(key)
}
}
i += 1
}
bounds.toArray
}
获取分区
getPartition
,边界数目少于等于128,直接遍历比较key和边界数组,得到分区索引,否则使用二分查找获取分区位置,最后根据升序还是降序,返回相应的PartitionId
private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]
def getPartition(key: Any): Int = {
val k = key.asInstanceOf[K]
var partition = 0
if (rangeBounds.length <= 128) {
// If we have less than 128 partitions naive search
while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
partition += 1
}
} else {
// Determine which binary search method to use only once.
partition = binarySearch(rangeBounds, k)
// binarySearch either returns the match location or -[insertion point]-1
if (partition < 0) {
partition = -partition-1
}
if (partition > rangeBounds.length) {
partition = rangeBounds.length
}
}
if (ascending) {
partition
} else {
rangeBounds.length - partition
}
}
蓄水池取样 Reservoir Sampling
适用于从包含n个项目的集合中选取k个样本,其中n为一很大或未知的数量
数学原理:共有n个对象,将前k个对象放入“水库”,从k+1个对象开始,以k/(k+1)的概率选择该对象,以k/(k+2)的概率选择第k+2个对象,以此类推,以k/m的概率选择第m个对象(m>k)。如果m被选中,则随机替换水库中的一个对象。最终每个对象被选中的概率均为k/n
/**
* 对每个分区进行蓄水池采样,采样实际上会触发一个Job
*
* @param rdd 需要扫描的 RDD,只包含key值
* @param sampleSizePerPartition 每个分区最大采样数目
* @return (total number of items, an array of (partitionId, number of items, sample))
*/
def sketch[K : ClassTag](
rdd: RDD[K],
sampleSizePerPartition: Int): (Long, Array[(Int, Long, Array[K])]) = {
val shift = rdd.id
val sketched = rdd.mapPartitionsWithIndex { (idx, iter) =>
val seed = byteswap32(idx ^ (shift << 16)) //随机种子
val (sample, n) = SamplingUtils.reservoirSampleAndCount(
iter, sampleSizePerPartition, seed)
Iterator((idx, n, sample))
}.collect()//触发Job
val numItems = sketched.map(_._2).sum//各个分区元素数目之和
(numItems, sketched)
}
采样的核心方法,返回采样结果,以及输入数据总数
def reservoirSampleAndCount[T: ClassTag](
input: Iterator[T],
k: Int,
seed: Long = Random.nextLong())
: (Array[T], Long) = {
val reservoir = new Array[T](k) //蓄水池的大小为K
//把前k个元素放入蓄水池中
var i = 0
while (i < k && input.hasNext) {
val item = input.next()
reservoir(i) = item
i += 1
}
if (i < k) {
// 如果输入数据量小于水池的大小k,截断数组直接返回
val trimReservoir = new Array[T](i)
System.arraycopy(reservoir, 0, trimReservoir, 0, i)
(trimReservoir, i)
} else {
// 蓄水池已经填满,继续取样,根据概率决定是否进行替换已有采样数据
var l = i.toLong
val rand = new XORShiftRandom(seed)
while (input.hasNext) {
val item = input.next()
l += 1
//产生[0,l)类型为double的随机数
val replacementIndex = (rand.nextDouble() * l).toLong
//新的数据被选择的概率为k/l,替换对应索引位置的元素
if (replacementIndex < k) {
reservoir(replacementIndex.toInt) = item
}
}
(reservoir, l)
}
}
网友评论