美文网首页
LinkedHashMap

LinkedHashMap

作者: help_youself | 来源:发表于2019-04-30 15:20 被阅读0次

    linked_hash_map.h

    #ifndef LINKED_HASH_MAP_H_
    #define LINKED_HASH_MAP_H_
    #include <unordered_map>
    #include <list>
    #include "basic_macro.h"
    #include "logging.h"
    // This holds a list of pair<Key, Value> items.  This list is what gets
    // traversed, and it's iterators from this list that we return from
    // begin/end/find.
    //
    // We also keep a map<Key, list::iterator> for find.  Since std::list is a
    // doubly-linked list, the iterators should remain stable.
    template <class Key, class Value, class Hash = std::hash<Key>>
    class linked_hash_map
    {
      private:
        typedef std::list<std::pair<Key, Value>> ListType;
        typedef std::unordered_map<Key, typename ListType::iterator, Hash> MapType;
    
      public:
        typedef typename ListType::iterator iterator;
        typedef typename ListType::reverse_iterator reverse_iterator;
        typedef typename ListType::const_iterator const_iterator;
        typedef typename ListType::const_reverse_iterator const_reverse_iterator;
        typedef typename MapType::key_type key_type;
        typedef typename ListType::value_type value_type;
        typedef typename ListType::size_type size_type;
    
        linked_hash_map() = default;
        explicit linked_hash_map(size_type bucket_count) : map_(bucket_count) {}
    
        linked_hash_map(linked_hash_map &&other) = default;
        linked_hash_map &operator=(linked_hash_map &&other) = default;
    
        // Returns an iterator to the first (insertion-ordered) element.  Like a map,
        // this can be dereferenced to a pair<Key, Value>.
        iterator begin()
        {
            return list_.begin();
        }
        const_iterator begin() const
        {
            return list_.begin();
        }
    
        // Returns an iterator beyond the last element.
        iterator end()
        {
            return list_.end();
        }
        const_iterator end() const
        {
            return list_.end();
        }
    
        // Returns an iterator to the last (insertion-ordered) element.  Like a map,
        // this can be dereferenced to a pair<Key, Value>.
        reverse_iterator rbegin()
        {
            return list_.rbegin();
        }
        const_reverse_iterator rbegin() const
        {
            return list_.rbegin();
        }
    
        // Returns an iterator beyond the first element.
        reverse_iterator rend()
        {
            return list_.rend();
        }
        const_reverse_iterator rend() const
        {
            return list_.rend();
        }
    
        // Front and back accessors common to many stl containers.
    
        // Returns the earliest-inserted element
        const value_type &front() const
        {
            return list_.front();
        }
    
        // Returns the earliest-inserted element.
        value_type &front()
        {
            return list_.front();
        }
    
        // Returns the most-recently-inserted element.
        const value_type &back() const
        {
            return list_.back();
        }
    
        // Returns the most-recently-inserted element.
        value_type &back()
        {
            return list_.back();
        }
    
        // Clears the map of all values.
        void clear()
        {
            map_.clear();
            list_.clear();
        }
    
        // Returns true iff the map is empty.
        bool empty() const
        {
            return list_.empty();
        }
    
        // Removes the first element from the list.
        void pop_front() { erase(begin()); }
    
        // Erases values with the provided key.  Returns the number of elements
        // erased.  In this implementation, this will be 0 or 1.
        size_type erase(const Key &key)
        {
            typename MapType::iterator found = map_.find(key);
            if (found == map_.end())
                return 0;
    
            list_.erase(found->second);
            map_.erase(found);
    
            return 1;
        }
    
        // Erases the item that 'position' points to. Returns an iterator that points
        // to the item that comes immediately after the deleted item in the list, or
        // end().
        // If the provided iterator is invalid or there is inconsistency between the
        // map and list, a CHECK() error will occur.
        iterator erase(iterator position)
        {
            typename MapType::iterator found = map_.find(position->first);
            if(found->second != position){
                DLOG(FATAL)<<"Inconsisent iterator for map and list, or the iterator is invalid.";
            }
    
            map_.erase(found);
            return list_.erase(position);
        }
    
        // Erases all the items in the range [first, last).  Returns an iterator that
        // points to the item that comes immediately after the last deleted item in
        // the list, or end().
        iterator erase(iterator first, iterator last)
        {
            while (first != last && first != end())
            {
                first = erase(first);
            }
            return first;
        }
    
        // Finds the element with the given key.  Returns an iterator to the
        // value found, or to end() if the value was not found.  Like a map, this
        // iterator points to a pair<Key, Value>.
        iterator find(const Key &key)
        {
            typename MapType::iterator found = map_.find(key);
            if (found == map_.end())
            {
                return end();
            }
            return found->second;
        }
    
        const_iterator find(const Key &key) const
        {
            typename MapType::const_iterator found = map_.find(key);
            if (found == map_.end())
            {
                return end();
            }
            return found->second;
        }
    
        // Returns the bounds of a range that includes all the elements in the
        // container with a key that compares equal to x.
        std::pair<iterator, iterator> equal_range(const key_type &key)
        {
            std::pair<typename MapType::iterator, typename MapType::iterator> eq_range =
                map_.equal_range(key);
    
            return std::make_pair(eq_range.first->second, eq_range.second->second);
        }
    
        std::pair<const_iterator, const_iterator> equal_range(
            const key_type &key) const
        {
            std::pair<typename MapType::const_iterator,
                      typename MapType::const_iterator>
                eq_range =
                    map_.equal_range(key);
            const const_iterator &start_iter = eq_range.first != map_.end() ? eq_range.first->second : end();
            const const_iterator &end_iter = eq_range.second != map_.end() ? eq_range.second->second : end();
    
            return std::make_pair(start_iter, end_iter);
        }
    
        // Returns the value mapped to key, or an inserted iterator to that position
        // in the map.
        Value &operator[](const key_type &key)
        {
            return (*((this->insert(std::make_pair(key, Value()))).first)).second;
        }
    
        // Inserts an element into the map
        std::pair<iterator, bool> insert(const std::pair<Key, Value> &pair)
        {
            // First make sure the map doesn't have a key with this value.  If it does,
            // return a pair with an iterator to it, and false indicating that we
            // didn't insert anything.
            typename MapType::iterator found = map_.find(pair.first);
            if (found != map_.end())
                return std::make_pair(found->second, false);
    
            // Otherwise, insert into the list first.
            list_.push_back(pair);
    
            // Obtain an iterator to the newly added element.  We do -- instead of -
            // since list::iterator doesn't implement operator-().
            typename ListType::iterator last = list_.end();
            --last;
    
            map_.insert(std::make_pair(pair.first, last));
    
            return std::make_pair(last, true);
        }
    
        size_type size() const
        {
            return list_.size();
        }
    
        template <typename... Args>
        std::pair<iterator, bool> emplace(Args &&... args)
        {
            ListType node_donor;
            auto node_pos =
                node_donor.emplace(node_donor.end(), std::forward<Args>(args)...);
            const auto &k = node_pos->first;
            auto ins = map_.insert({k, node_pos});
            if (!ins.second)
                return {ins.first->second, false};
            list_.splice(list_.end(), node_donor, node_pos);
            return {ins.first->second, true};
        }
    
        void swap(linked_hash_map &other)
        {
            map_.swap(other.map_);
            list_.swap(other.list_);
        }
    
      private:
        // The map component, used for speedy lookups
        MapType map_;
    
        // The list component, used for maintaining insertion order
        ListType list_;
    
        // |map_| contains iterators to |list_|, therefore a default copy constructor
        // or copy assignment operator would result in an inconsistent state.
        DISALLOW_COPY_AND_ASSIGN(linked_hash_map);
    };
    #endif
    
    

    [1] 图解LinkedHashMap原理

    相关文章

      网友评论

          本文标题:LinkedHashMap

          本文链接:https://www.haomeiwen.com/subject/ncdvnqtx.html