美文网首页
Android的线程和线程池--《Android开发艺术探索》阅

Android的线程和线程池--《Android开发艺术探索》阅

作者: 胡飞洋 | 来源:发表于2020-01-21 15:43 被阅读0次

    除了Thread,Android中扮演线程的角色还有:AsyncTask、HandlerThread、IntentService。

    • AsyncTask:内部封装线程池、handler,便于在子线程中更新UI。
    • HandlerThread:可以使用消息循环的线程,在它内部可以使用Handler。
    • IntentService:内部使用HandlerThread执行任务,完毕后会自动退出。(相比后台线程)因是组件,优先级高,不易被杀死。

    线程是操作系统调度的最小单元,是一种受限的资源,不可能无限制的产生。且线程的创建和销毁需要相应的开销。且存在大量线程时,系统会通过时间片轮转的方式调度线程,因此线程不可能做到并行,除非线程数小于等于cpu数。所以需要 线程池,它可以缓存一定数量的线程,避免频繁地线程创建和销毁带来的系统开销。

    一、Android中的线程形态

    1.1 AsyncTask

    AsyncTask是用来在线程池中处理异步任务,并可以把处理进度和结果发送到UI线程。

    1.1.1 使用方法

    AsyncTask的基本使用方法,示例如下:

        private void testAsyncTask() {
            //一般要在主线程实例化。(实际在9.0上 子线程创建实例然后主线程execute没问题)
            //三个泛型参数依次表示参数类型、进度类型、结果类型。
            //覆写的这几个方法不可以直接调用
            AsyncTask<Integer, Integer, String> task = new AsyncTask<Integer, Integer, String>() {
    
                @Override
                protected void onPreExecute() {
                    super.onPreExecute();
                    //主线程执行,在异步任务之前
                    Log.i(TAG, "testAsyncTask onPreExecute: ");
                }
    
                @Override
                protected String doInBackground(Integer... integers) {
                    Log.i(TAG, "testAsyncTask doInBackground: ");
                    //任务在 线程池中执行 耗时操作
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    //发出进度
                    publishProgress(50);
                    try {
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    //再发出进度
                    publishProgress(100);
    
                    return "我是结果。参数是" + integers[0];
                }
    
                @Override
                protected void onPostExecute(String s) {
                    super.onPostExecute(s);
                    //在主线程执行,在异步任务执行完之后
                    Log.i(TAG, "testAsyncTask onPostExecute: "+s);
                }
    
                @Override
                protected void onProgressUpdate(Integer... values) {
                    super.onProgressUpdate(values);
                    //执行在主线程,调用publishProgress()后就会执行
                    Log.i(TAG, "testAsyncTask onProgressUpdate: 进度:"+values[0]+"%");
                }
    
                @Override
                protected void onCancelled() {
                    super.onCancelled();
                    //取消任务
                }
            };
            //必须要在主线程执行execute,且只能执行一次
            task.execute(100);
        }
    

    执行结果日志如下:

    2020-01-14 11:29:03.510 13209-13209/com.hfy.demo01 I/hfy: testAsyncTask onPreExecute: 
    2020-01-14 11:29:03.511 13209-13282/com.hfy.demo01 I/hfy: testAsyncTask doInBackground: 
    2020-01-14 11:29:04.558 13209-13209/com.hfy.demo01 I/hfy: testAsyncTask onProgressUpdate: 进度:50%
    2020-01-14 11:29:05.589 13209-13209/com.hfy.demo01 I/hfy: testAsyncTask onProgressUpdate: 进度:100%
    2020-01-14 11:29:05.590 13209-13209/com.hfy.demo01 I/hfy: testAsyncTask onPostExecute: 我是结果。参数是100
    

    1.1.2 原理分析:

    先看构造方法

        public AsyncTask() {
            this((Looper) null);
        }
        public AsyncTask(@Nullable Handler handler) {
            this(handler != null ? handler.getLooper() : null);
        }
    
        /**
         * Creates a new asynchronous task. This constructor must be invoked on the UI thread.
         */
        public AsyncTask(@Nullable Looper callbackLooper) {
            mHandler = callbackLooper == null || callbackLooper == Looper.getMainLooper()
                ? getMainHandler()
                : new Handler(callbackLooper);
    
            mWorker = new WorkerRunnable<Params, Result>() {
                public Result call() throws Exception {
                    mTaskInvoked.set(true);
                    Result result = null;
                    try {
                        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
                        //noinspection unchecked
                        result = doInBackground(mParams);
                        Binder.flushPendingCommands();
                    } catch (Throwable tr) {
                        mCancelled.set(true);
                        throw tr;
                    } finally {
                        //执行完,发出结果
                        postResult(result);
                    }
                    return result;
                }
            };
    
            mFuture = new FutureTask<Result>(mWorker) {
                @Override
                protected void done() {
                    try {
                        postResultIfNotInvoked(get());
                    } catch (InterruptedException e) {
                        android.util.Log.w(LOG_TAG, e);
                    } catch (ExecutionException e) {
                        throw new RuntimeException("An error occurred while executing doInBackground()",
                                e.getCause());
                    } catch (CancellationException e) {
                        postResultIfNotInvoked(null);
                    }
                }
            };
        }
        private static Handler getMainHandler() {
            synchronized (AsyncTask.class) {
                if (sHandler == null) {
                    //这里传入的是主线程的looper,所以用来把消息切到主线程
                    sHandler = new InternalHandler(Looper.getMainLooper());
                }
                return sHandler;
            }
        }
    

    看到,首先使用主线程的Looper创建了InternalHandler实例。然后创建了WorkerRunnable的实例mWorker,call方法中看到调用了 doInBackground(mParams),可以猜想call方法是执行在线程池的。然后创建了FutureTask的实例mFuture并传入了mWorker,mFuture怎么使用的呢?后面会分析道。我们可以先看下Handler的实现InternalHandler:

        private static class InternalHandler extends Handler {
            public InternalHandler(Looper looper) {
                super(looper);
            }
    
            @SuppressWarnings({"unchecked", "RawUseOfParameterizedType"})
            @Override
            public void handleMessage(Message msg) {
                AsyncTaskResult<?> result = (AsyncTaskResult<?>) msg.obj;
                switch (msg.what) {
                    case MESSAGE_POST_RESULT:
                        // There is only one result
                        result.mTask.finish(result.mData[0]);
                        break;
                    case MESSAGE_POST_PROGRESS:
                        result.mTask.onProgressUpdate(result.mData);
                        break;
                }
            }
        }
    

    看到有处理发送结果、处理发送进度的消息。消息从哪发来的呢?先留个疑问。继续看AsyncTask的execute方法:

        private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;
        /**
         *  串行 执行器
         */
        public static final Executor SERIAL_EXECUTOR = new SerialExecutor();
        
        @MainThread
        public final AsyncTask<Params, Progress, Result> execute(Params... params) {
            return executeOnExecutor(sDefaultExecutor, params);
        }
    
        @MainThread
        public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,
                Params... params) {
            if (mStatus != Status.PENDING) {
                switch (mStatus) {
                    case RUNNING:
                        throw new IllegalStateException("Cannot execute task:"
                                + " the task is already running.");
                    case FINISHED:
                        throw new IllegalStateException("Cannot execute task:"
                                + " the task has already been executed "
                                + "(a task can be executed only once)");
                }
            }
    
            mStatus = Status.RUNNING;
    
            onPreExecute();
    
            mWorker.mParams = params;
            exec.execute(mFuture);
    
            return this;
        }
    

    execute方法走到了executeOnExecutor方法,先进行当前任务状态的判断,默认是准备执行任务的PENDING状态,然后变为RUNNING。但如果正在执行的RUNNING、执行完的FINISHED都会抛出异常。这也是一个任务实例只能执行一次的原因。然后又走到了onPreExecute(),因为execute执行在UI线程 所以也解释了其是执行在UI线程的原因。接着把参数赋值给mWorker,mFuture作为参数执行 静态的sDefaultExecutor的execute()方法。注意到sDefaultExecutor是SerialExecutor实例,去瞅瞅:

        //线程池
        public static final Executor THREAD_POOL_EXECUTOR;
    
        static {
            ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
                    CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
                    sPoolWorkQueue, sThreadFactory);
            threadPoolExecutor.allowCoreThreadTimeOut(true);
            THREAD_POOL_EXECUTOR = threadPoolExecutor;
        }
        
        private static class SerialExecutor implements Executor {
            final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();
            Runnable mActive;
            //execute方法加了锁
            public synchronized void execute(final Runnable r) {
                //把r存入到任务队列的队尾
                mTasks.offer(new Runnable() {
                    public void run() {
                        try {
                            r.run();
                        } finally {
                            //任务执行完,就执行下一个
                            scheduleNext();
                        }
                    }
                });
                //把r存入任务队列后,然后当前没有取出的任务,就 取 队列头部 的任务执行
                if (mActive == null) {
                    scheduleNext();
                }
            }
    
            protected synchronized void scheduleNext() {
                //取 队列头部 的任务执行
                if ((mActive = mTasks.poll()) != null) {
                    //THREAD_POOL_EXECUTOR是线程池
                    THREAD_POOL_EXECUTOR.execute(mActive);
                }
            }
        }
    

    上面都有注释,可见SerialExecutor就是串行执行器,最终执行在THREAD_POOL_EXECUTOR的线程池中。r.run()实际走的是FutureTask的run方法:

        public FutureTask(Callable<V> callable) {
            if (callable == null)
                throw new NullPointerException();
            this.callable = callable;
            this.state = NEW;       // ensure visibility of callable
        }
        
        public void run() {
            if (state != NEW ||
                !U.compareAndSwapObject(this, RUNNER, null, Thread.currentThread()))
                return;
            try {
                Callable<V> c = callable;
                if (c != null && state == NEW) {
                    V result;
                    boolean ran;
                    try {
                    
                        //callable的call方法
                        result = c.call();
                        
                        ran = true;
                    } catch (Throwable ex) {
                        result = null;
                        ran = false;
                        setException(ex);
                    }
                    if (ran)
                        set(result);
                }
            } finally {
                // runner must be non-null until state is settled to
                // prevent concurrent calls to run()
                runner = null;
                // state must be re-read after nulling runner to prevent
                // leaked interrupts
                int s = state;
                if (s >= INTERRUPTING)
                    handlePossibleCancellationInterrupt(s);
            }
        }
    

    FutureTask的run方法中调用的传入的callable的call()方法,再结合上面AsyncTask的构造方法,mWorker就是实现callable的call()方法。所以里面的doInBackground方法就会串行的执行在线程池中。因为串行,那使用execute方法不能执行特别耗时的任务,否则会阻塞后面等待的任务。若想要并行,可采用AsyncTask的executeOnExecutor方法,传入线程池THREAD_POOL_EXECUTOR即可

    还注意到,doInBackground执行完后调用了postResult(result),result就是doInBackground返回值:

        private Handler getHandler() {
            return mHandler;
        }
        private Result postResult(Result result) {
            @SuppressWarnings("unchecked")
            Message message = getHandler().obtainMessage(MESSAGE_POST_RESULT,
                    new AsyncTaskResult<Result>(this, result));
            message.sendToTarget();
            return result;
        }
    

    看到,使用handler发送消息,消息类型就是MESSAGE_POST_RESULT,前面看到InternalHandler内部handleMessage是有处理的,就是调用task的finish方法:

        private void finish(Result result) {
            if (isCancelled()) {
                //如果任务取消了,回调onCancelled
                onCancelled(result);
            } else {
                //没有取消
                onPostExecute(result);
            }
            //修改任务状态为完成
            mStatus = Status.FINISHED;
        }
    

    可见如果没有调用cancel(),就会走onPostExecute,所以onPostExecute也是执行在UI线程的

    最后看下publishProgress方法:

        protected final void publishProgress(Progress... values) {
            if (!isCancelled()) {
                getHandler().obtainMessage(MESSAGE_POST_PROGRESS,
                        new AsyncTaskResult<Progress>(this, values)).sendToTarget();
            }
        }
    

    如果没有取消任务,也是用handler,消息类型就是MESSAGE_POST_PROGRESS,前面看到InternalHandler内部handleMessage是有处理的,最后在UI线程执行onProgressUpdate方法。

    举两个例子🌰
    例子1,默认的串行执行:

            new AsyncTask<Void, Void, Void>() {
                @Override
                protected Void doInBackground(Void... voids) {
                    Log.i(TAG, "task1 SERIAL_EXECUTOR doInBackground: ");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return null;
                }
            }.execute();
    
            new AsyncTask<Void, Void, Void>() {
                @Override
                protected Void doInBackground(Void... voids) {
                    Log.i(TAG, "task2 SERIAL_EXECUTOR doInBackground: ");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return null;
                }
            }.execute();
    
            new AsyncTask<Void, Void, Void>() {
                @Override
                protected Void doInBackground(Void... voids) {
                    Log.i(TAG, "task3 SERIAL_EXECUTOR doInBackground: ");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return null;
                }
            }.execute();
    

    执行结果如下,每隔两秒打印一次,可见是串行执行。

    2020-01-16 14:51:40.836 13346-13599/com.hfy.demo01 I/hfy: task1 SERIAL_EXECUTOR doInBackground: 
    2020-01-16 14:51:42.876 13346-13598/com.hfy.demo01 I/hfy: task2 SERIAL_EXECUTOR doInBackground: 
    2020-01-16 14:51:44.915 13346-13599/com.hfy.demo01 I/hfy: task3 SERIAL_EXECUTOR doInBackground: 
    

    例子2,并行执行-直接使用线程池:

            new AsyncTask<Void, Void, Void>() {
                @Override
                protected Void doInBackground(Void... voids) {
                    Log.i(TAG, "task1 THREAD_POOL_EXECUTOR doInBackground: ");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return null;
                }
            }.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
    
            new AsyncTask<Void, Void, Void>() {
                @Override
                protected Void doInBackground(Void... voids) {
                    Log.i(TAG, "task2 THREAD_POOL_EXECUTOR doInBackground: ");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return null;
                }
            }.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
    
            new AsyncTask<Void, Void, Void>() {
                @Override
                protected Void doInBackground(Void... voids) {
                    Log.i(TAG, "task3 THREAD_POOL_EXECUTOR doInBackground: ");
                    try {
                        Thread.sleep(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    return null;
                }
            }.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR);
    

    执行结果如下,同时打印出来,可见是并行执行。

    2020-01-16 14:51:38.772 13346-13599/com.hfy.demo01 I/hfy: task1 THREAD_POOL_EXECUTOR doInBackground: 
    2020-01-16 14:51:38.773 13346-13600/com.hfy.demo01 I/hfy: task2 THREAD_POOL_EXECUTOR doInBackground: 
    2020-01-16 14:51:38.774 13346-13601/com.hfy.demo01 I/hfy: task3 THREAD_POOL_EXECUTOR doInBackground: 
    

    总结一下,AsyncTask内部默认 使用串行执行器 串行地 在线程池 执行任务,我们也可以使用executeOnExecutor直接使用线程池并行执行。内部使用handler把进度和结果从线程池切换到UI线程。

    1.2 HandlerThread

    HandlerThread继承自Thread,内部已准备了Looper并已开启循环。所以可以在UI线程使用handler发送任务到HandlerThread中执行,且可以随意多次发送任务。(而普通thread执行完run方法中的耗时操作就结束了。)当不使用时 如onDestroy中,使用quit()或quitSafely()退出即可。

    public class HandlerThread extends Thread {
        int mPriority;
        int mTid = -1;
        Looper mLooper;
        private @Nullable Handler mHandler;
    
        public HandlerThread(String name) {
            super(name);
            mPriority = Process.THREAD_PRIORITY_DEFAULT;
        }
        public HandlerThread(String name, int priority) {
            super(name);
            mPriority = priority;
        }
        //looper开启之前可以做一些事情
        protected void onLooperPrepared() {
        }
    
        @Override
        public void run() {
            mTid = Process.myTid();
            //给当前线程准备Looper实例
            Looper.prepare();
            //加锁,保证能获取到looer实例
            synchronized (this) {
                mLooper = Looper.myLooper();
                notifyAll();
            }
            Process.setThreadPriority(mPriority);
            onLooperPrepared();
            //开启循环
            Looper.loop();
            mTid = -1;
        }
       
        public Looper getLooper() {
            if (!isAlive()) {
                return null;
            }
            
            // If the thread has been started, wait until the looper has been created.
            synchronized (this) {
                while (isAlive() && mLooper == null) {
                    try {
                        //获取不到就等 run中的notifyAll()被调用
                        wait();
                    } catch (InterruptedException e) {
                    }
                }
            }
            return mLooper;
        }
        //直接退出
        public boolean quit() {
            Looper looper = getLooper();
            if (looper != null) {
                looper.quit();
                return true;
            }
            return false;
        }
        //安全退出(执行完正在正在执行的任务再退出)
        public boolean quitSafely() {
            Looper looper = getLooper();
            if (looper != null) {
                looper.quitSafely();
                return true;
            }
            return false;
        }
    
        public int getThreadId() {
            return mTid;
        }
    }
    

    举个例子🌰

        private void testHandlerThread() {
            HandlerThread handlerThread = new HandlerThread("HandlerThreadName");
            handlerThread.start();
            Handler handler = new Handler(handlerThread.getLooper()) {
                @Override
                public void handleMessage(Message msg) {
                    switch (msg.what) {
                        case 1000:
                            try {
                                Thread.sleep(2000);
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                            Log.i(TAG, "handleMessage: thread name="+Thread.currentThread().getName()+",what="+msg.what);
                            break;
                        case 1001:
                            try {
                                Thread.sleep(1000);
                            } catch (InterruptedException e) {
                                e.printStackTrace();
                            }
                            Log.i(TAG, "handleMessage: thread name="+Thread.currentThread().getName()+",what="+msg.what);
                            break;
                        default:
                            break;
                    }
                }
            };
    
            Log.i(TAG, "sendMessage thread name="+Thread.currentThread().getName());
            handler.sendMessage(Message.obtain(handler, 1000));
            handler.sendMessage(Message.obtain(handler, 1001));
        }
    

    可见在主线程发送了两个任务,顺序执行在HandlerThread了。

    2020-01-16 17:12:46.832 16293-16293/com.hfy.demo01 I/hfy: sendMessage thread name=main
    2020-01-16 17:12:48.833 16293-17187/com.hfy.demo01 I/hfy: handleMessage: thread name=HandlerThreadName,what=1000
    2020-01-16 17:12:49.834 16293-17187/com.hfy.demo01 I/hfy: handleMessage: thread name=HandlerThreadName,what=1001
    

    1.3 IntentService

    IntentService是继承自Service的抽象类,可执行后台耗时任务,执行完后会自动停止。
    因为是Service,即是Android的组件,优先级比单纯的线程高,不容易被系统杀死,所以可用来执行优先级高的后台任务,

    public abstract class IntentService extends Service {
        private volatile Looper mServiceLooper;
        private volatile ServiceHandler mServiceHandler;
        private String mName;
        private boolean mRedelivery;
        
        //内部类handler
        private final class ServiceHandler extends Handler {
            public ServiceHandler(Looper looper) {
                super(looper);
            }
    
            @Override
            public void handleMessage(Message msg) {
                //先回调出去,待IntentService子类覆写自己的逻辑
                onHandleIntent((Intent)msg.obj);
                //结束service自己,msg.arg1是标记某次startService的Id。
                //但如果此时外部又调用了startService,那么最新的请求id就不是msg.arg1了,所以下面这句就不会结束service。
                stopSelf(msg.arg1);
            }
        }
        //name是线程名
        public IntentService(String name) {
            super();
            mName = name;
        }
        ...
        @Override
        public void onCreate() {
            super.onCreate();
            //创建HandlerThread实例 并启动
            HandlerThread thread = new HandlerThread("IntentService[" + mName + "]");
            thread.start();
            //创建对应looper的handler,所以mServiceHandler的handleMessage执行在 线程中
            mServiceLooper = thread.getLooper();
            mServiceHandler = new ServiceHandler(mServiceLooper);
        }
    
        @Override
        public void onStart(@Nullable Intent intent, int startId) {
            //发送消息,参数是startId、intent
            //每次startService() 都会走这里
            Message msg = mServiceHandler.obtainMessage();
            msg.arg1 = startId;
            msg.obj = intent;
            mServiceHandler.sendMessage(msg);
        }
        
        @Override
        public int onStartCommand(@Nullable Intent intent, int flags, int startId) {
            onStart(intent, startId);
            return mRedelivery ? START_REDELIVER_INTENT : START_NOT_STICKY;
        }
    
        @Override
        public void onDestroy() {
            //退出looper循环
            mServiceLooper.quit();
        }
    
        ...
    
         //执行子在线程,同时只存在一个intent(因为looper的队列),所以如果此方法执行时间过长,会阻塞其他请求,所有请求执行完,service会自动停止,所以不能手动调用stopSelf。
        @WorkerThread
        protected abstract void onHandleIntent(@Nullable Intent intent);
    }
    

    onCreate中创建了HandlerThread实例,对应的Handler实例mServiceHandler,所以mServiceHandler发送的任务都会在线程中执行。
    onStartCommand中调用的是onStart,onStart中确实使用mServiceHandler发送消息,携带的参数是startId、intent,startId是每次启动service的标记,intent就是启动service的intent。
    onDestroy中退出looper循环。

    发送的消息在哪处理的呢?
    那就看ServiceHandler,其继承自Handler,handleMessage方法中先调用了抽象方法onHandleIntent((Intent)msg.obj),参数就是启动service的intent。所以IntentService 的子类必须要重写onHandleIntent,并处理这个intent。因为mServiceHandler拿到的HandlerThread的looper,所以这个onHandleIntent()就是执行在子线程中的。
    接着调用了stopSelf(msg.arg1),msg.arg1)就是前面说的启动service的标记。对stopSelf(int startId)说明如下:

    startId:代表启动服务的次数,由系统生成。
    stopSelf(int startId):在其参数startId跟 最后启动该service时生成的ID相等时才会执行停止服务。

    stopSelf():直接停止服务。

    使用场景: 如果同时有多个服务启动请求发送到onStartCommand(),不应该在处理完一个请求后调用stopSelf();因为在调用此函数销毁service之前,可能service又接收到新的启动请求,如果此时service被销毁,新的请求将得不到处理。此情况应该调用stopSelf(int startId)。

    所以,当多次启动service,就会多次调用 onStart,那么会有多个任务发出,当每次任务执行完onHandleIntent时,stopSelf(int startId)中会判断,若又启动service那么就不会停止。那么looper继续取下个消息继续处理。直到stopSelf中的startId和最新启动的startId相同,就会停止。因为是looper,所以这些任务都是按启动service的顺序执行的。

    举个例子🌰

        private void testIntentService() {
    
            Intent intent= new Intent(this, MyIntentService.class);
            intent.putExtra("task_name","task1");
            startService(intent);
    
            intent.putExtra("task_name","task2");
            startService(intent);
    
            intent.putExtra("task_name","task3");
            startService(intent);
        }
    
        public static class MyIntentService extends IntentService {
    
            public MyIntentService() {
                super("MyIntentServiceThread");
            }
    
            @Override
            protected void onHandleIntent(Intent intent) {            
                Log.i(TAG, "MyIntentService onHandleIntent: begin."+intent.getStringExtra("task_name"));
                try {
                    Thread.sleep(2000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                Log.i(TAG, "MyIntentService onHandleIntent: done."+intent.getStringExtra("task_name"));
            }
    
            @Override
            public void onDestroy() {
                Log.i(TAG, "MyIntentService onDestroy: ");
                super.onDestroy();
            }
        }
    
    2020-01-17 09:58:44.639 11117-11236/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: begin.task1
    2020-01-17 09:58:46.640 11117-11236/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: done.task1
    2020-01-17 09:58:46.641 11117-11236/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: begin.task2
    2020-01-17 09:58:48.642 11117-11236/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: done.task2
    2020-01-17 09:58:48.644 11117-11236/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: begin.task3
    2020-01-17 09:58:50.645 11117-11236/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: done.task3
    2020-01-17 09:58:50.650 11117-11117/com.hfy.demo01 I/hfy: MyIntentService onDestroy:
    

    静态内部类MyIntentService继承IntentService并重写了onHandleIntent,就是睡两秒。然后不间断连续启动3次,由日志可见是顺序执行的,最后都执行完才走到onDestroy。

    再看,如果是间隔三秒发送呢:

            private void testIntentService() {
    
            Log.i(TAG, "testIntentService: task1");
            Intent intent= new Intent(this, MyIntentService.class);
            intent.putExtra("task_name","task1");
            startService(intent);
    
            new Handler().postDelayed(new Runnable() {
                @Override
                public void run() {
                    Log.i(TAG, "testIntentService: task2");
                    intent.putExtra("task_name","task2");
                    startService(intent);
                }
            }, 3000);
    
            new Handler().postDelayed(new Runnable() {
                @Override
                public void run() {
                    Log.i(TAG, "testIntentService: task3");
                    intent.putExtra("task_name","task3");
                    startService(intent);
                }
            }, 3000);
        }
    
    2020-01-17 10:16:29.335 14739-14739/com.hfy.demo01 I/hfy: testIntentService: task1
    2020-01-17 10:16:29.698 14739-14843/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: begin.task1
    2020-01-17 10:16:31.698 14739-14843/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: done.task1
    2020-01-17 10:16:31.701 14739-14739/com.hfy.demo01 I/hfy: MyIntentService onDestroy: 
    2020-01-17 10:16:32.371 14739-14739/com.hfy.demo01 I/hfy: testIntentService: task2
    2020-01-17 10:16:32.390 14739-14862/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: begin.task2
    2020-01-17 10:16:34.391 14739-14862/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: done.task2
    2020-01-17 10:16:34.451 14739-14739/com.hfy.demo01 I/hfy: MyIntentService onDestroy: 
    2020-01-17 10:16:35.339 14739-14739/com.hfy.demo01 I/hfy: testIntentService: task3
    2020-01-17 10:16:35.364 14739-14873/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: begin.task3
    2020-01-17 10:16:37.364 14739-14873/com.hfy.demo01 I/hfy: MyIntentService onHandleIntent: done.task3
    2020-01-17 10:16:37.367 14739-14739/com.hfy.demo01 I/hfy: MyIntentService onDestroy:
    

    可见每个任务执行完 就走onDestroy了。这是因为当一个任务执行完,走到stopSelf(int startId)时,后面还没有再次开启service,所以此时的stopSelf中的startId就是最新的,所以就会停止服务了。

    二、Android中的线程池

    线程池优点如下:

    • 能够重用线程池中的线程,避免线程的创建、销毁带来的性能开销。
    • 能有效控制线程池中的最大并发数,避免大量的线程之间因互相抢占系统资源而导致的阻塞现象。
    • 能对线程进行简单管理,并提供定时执行、指定间隔循环执行的功能。
      Android中的线程池来源于Java的Executor,正在的实现是ThreadPoolExecutor。

    2.1 ThreadPoolExecutor

    ThreadPoolExecutor是线程池的真正实现,看下其构造方法里的参数,参数会影响线程池的功能特性。

        public ThreadPoolExecutor(int corePoolSize,
                                  int maximumPoolSize,
                                  long keepAliveTime,
                                  TimeUnit unit,
                                  BlockingQueue<Runnable> workQueue,
                                  ThreadFactory threadFactory) {
            this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                 threadFactory, defaultHandler);
        }
    
    • corePoolSize,核心线程数,默认一般核心线程会在线程池中一直存活,即使处理空闲状态。但当allowCoreThreadTimeOut设置为true,那么核心线程就会有闲置超时时间,闲置超过超时时间就会终止。超时时间由keepAliveTime和unit指定。
    • maximumPoolSize,最大线程数,当活动线程到达这个数,后续的新任务会被阻塞。
    • keepAliveTime,非核心线程闲置时 的超时时长。非核心线程闲置时间超过此时间就会被回收。当allowCoreThreadTimeOut设置为true,keepAliveTime也会作用于核心线程。
    • unit,是keepAliveTime的时间单位,取值是枚举,有TimeUnit.MINUTES、TimeUnit.SECONDS、TimeUnit.MILLISECONDS等。
    • workQueue,线程池中的任务队列,通过线程池的execute方法提交的Runnable会存在这个队列中。
    • threadFactory,线程工厂,为线程池提供创建新线程的能力。

    还有个不常用参数RejectedExecutionHandler handler,调用其rejectedExecution()方法来处理 当任务队列已满 时 不能执行新任务的情况。handler的默认实现是AbortPolicy,rejectedExecution()中会直接抛出异常RejectedExecutionException。其他实现如DiscardPolicy的rejectedExecution()中是不做任何事。还有CallerRunsPolicy、DiscardOldestPolicy。

    ==ThreadPoolExecutor执行任务的执行规则== 如下:

    • 如果线程池中的线程数未到达核心线程数,那么会直接启动一个核心线程来执行这个任务。(不管已启动的核心线程是否空闲)
    • 如果线程池中的线程数已到达或超过核心线程数,那么任务会插入到任务队列中排队等待执行。
    • 如果2中 任务无法插入到队列中,一般是对队列已满,若此时未达到最大线程数,就会启动非核心线程执行这个任务。
    • 如果3中线程数达到最大线程数,那么会拒绝执行任务,即会调用RejectedExecutionHandler的rejectedExecution()通知调用者。

    我们看下AsyncTask中线程池的配置:

        private static final int CPU_COUNT = Runtime.getRuntime().availableProcessors();
        // We want at least 2 threads and at most 4 threads in the core pool,
        // preferring to have 1 less than the CPU count to avoid saturating
        // the CPU with background work
        private static final int CORE_POOL_SIZE = Math.max(2, Math.min(CPU_COUNT - 1, 4));
        private static final int MAXIMUM_POOL_SIZE = CPU_COUNT * 2 + 1;
        private static final int KEEP_ALIVE_SECONDS = 30;
    
        private static final ThreadFactory sThreadFactory = new ThreadFactory() {
            private final AtomicInteger mCount = new AtomicInteger(1);
            public Thread newThread(Runnable r) {
                return new Thread(r, "AsyncTask #" + mCount.getAndIncrement());
            }
        };
    
        private static final BlockingQueue<Runnable> sPoolWorkQueue =
                new LinkedBlockingQueue<Runnable>(128);
    
        /**
         * An {@link Executor} that can be used to execute tasks in parallel.
         */
        public static final Executor THREAD_POOL_EXECUTOR;
    
        static {
            ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
                    CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_SECONDS, TimeUnit.SECONDS,
                    sPoolWorkQueue, sThreadFactory);
            threadPoolExecutor.allowCoreThreadTimeOut(true);
            THREAD_POOL_EXECUTOR = threadPoolExecutor;
        }
    

    可见THREAD_POOL_EXECUTOR这个线程池的配置如下:

    • 核心线程数,2-4个
    • 最大线程数,CPU核心数量 * 2 + 1
    • 超时时间30s,允许核心线程超时
    • 队列容量128

    2.2 线程池的分类

    Android中常见的4类线程池,都是直接或间接配置ThreadPoolExecutor实现自己特性的,它们是FixedThreadPool、CachedThreadPool、ScheduledThreadPool、SingleThreadExecutor。它们都可以通过工具类Executors获取。

    2.2.1 FixedThreadPool

    通过Executors的newFixedThreadPool方法获得。固定的核心线程数量,没有非核心线程,空闲时不会被回收,队列长度无限制。因为不会被回收,所以能快速执行外界请求

        public static ExecutorService newFixedThreadPool(int nThreads) {
            return new ThreadPoolExecutor(nThreads, nThreads,
                                          0L, TimeUnit.MILLISECONDS,
                                          new LinkedBlockingQueue<Runnable>());
        }
    

    2.2.2 CachedThreadPool

    通过Executors的newCachedThreadPool方法获得。核心线程数0,非核心线程数无限制,空闲回收超时时间60s,队列不能插入任务。当所有线程都处于活动状态,就会创建新线程处理任务,否则利用空闲线程处理任务。当整个线程池空闲时 所有线程都会被回收,不占用系统资源。因此,适合执行大量耗时较少的任务

        public static ExecutorService newCachedThreadPool() {
            return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                          60L, TimeUnit.SECONDS,
                                          new SynchronousQueue<Runnable>());
        }
    

    2.2.3 ScheduledThreadPool

    通过Executors的newScheduledThreadPool方法获得。固定核心线程数,不限制非核心线程数,非核心线程闲置回收超时时间是10ms。一般用于执行定时任务、固定周期的重复任务

        public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize) {
            return new ScheduledThreadPoolExecutor(corePoolSize);
        }
       
        private static final long DEFAULT_KEEPALIVE_MILLIS = 10L;
        public ScheduledThreadPoolExecutor(int corePoolSize) {
            super(corePoolSize, Integer.MAX_VALUE,
                  DEFAULT_KEEPALIVE_MILLIS, MILLISECONDS,
                  new DelayedWorkQueue());
        }
    

    2.2.4 SingleThreadExecutor

    通过Executors的newSingleThreadExecutor方法获得。仅有1个核心线程,不会回收。可确保所有任务按顺序执行,不用处理线程同步的问题 。

        private void testThreadPoolExecutor() {
            Runnable runnable = new Runnable() {
                @Override
                public void run() {
                    try {
                        Log.i(TAG, "testThreadPoolExecutor: run begin");
                        Thread.sleep(4000);
                        Log.i(TAG, "testThreadPoolExecutor: run end");
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            };
    
            ExecutorService fixedThreadPool = Executors.newFixedThreadPool(4);
            fixedThreadPool.execute(runnable);
    
            ExecutorService cachedThreadPool = Executors.newCachedThreadPool();
            cachedThreadPool.execute(runnable);
    
            ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(4);
            scheduledThreadPool.execute(runnable);
            //延迟2秒执行
            scheduledThreadPool.schedule(runnable, 2, TimeUnit.SECONDS);
            //延迟2秒执行,然后以每次 任务开始的时间计时, 1秒后,如果任务是结束的 就立刻执行下一次;如果没有结束,就等它结束后立即执行下一次。
            scheduledThreadPool.scheduleAtFixedRate(runnable, 0, 1, TimeUnit.SECONDS);
            //延迟3秒执行,然后以每次任务执行完后的时间计时, 2秒后,执行下一次~
            scheduledThreadPool.scheduleWithFixedDelay(runnable,1,2,TimeUnit.SECONDS);
    
            ExecutorService singleThreadExecutor = Executors.newSingleThreadExecutor();
            singleThreadExecutor.execute(runnable);
        }
    

    注意点:scheduledThreadPool使用时注意区分scheduleAtFixedRate、scheduleWithFixedDelay的循环任务的逻辑区别

    • scheduleAtFixedRate,以每次 任务开始的时间计时, period时间后,如果任务是结束的就立刻执行下一次;如果没有结束,就等它结束后立即执行下一次。
    • scheduleWithFixedDelay,以每次任务执行完后的时间计时,period时间后,执行下一次。

    并且,这两个方法都是在任务结束后才执行下一次,那么如果某个任务发生异无法执行完,那么整个循环任务就会失效。所以需要给任务添加超时机制(比如给任务加上try-catch-finally,catch住超时异常) 保证任务即使发生异常也可以结束,就可保证循环正常执行了。

    相关文章

      网友评论

          本文标题:Android的线程和线程池--《Android开发艺术探索》阅

          本文链接:https://www.haomeiwen.com/subject/ncyezctx.html