美文网首页
如何合理地估算线程池大小

如何合理地估算线程池大小

作者: 旧日回忆 | 来源:发表于2023-11-07 17:00 被阅读0次

    如何合理地估算线程池大小?

    这个问题虽然看起来很小,却并不那么容易回答。大家如果有更好的方法欢迎赐教,先来一个天真的估算方法:假设要求一个系统的TPS(Transaction Per Second或者Task Per Second)至少为20,然后假设每个Transaction由一个线程完成,继续假设平均每个线程处理一个Transaction的时间为4s。那么问题转化为:

    如何设计线程池大小,使得可以在1s内处理完20个Transaction?

    计算过程很简单,每个线程的处理能力为0.25TPS,那么要达到20TPS,显然需要20/0.25=80个线程。

    很显然这个估算方法很天真,因为它没有考虑到CPU数目。一般服务器的CPU核数为16或者32,如果有80个线程,那么肯定会带来太多不必要的线程上下文切换开销。

    再来第二种简单的但不知是否可行的方法(N为CPU总核数):

    如果是CPU密集型应用,则线程池大小设置为N+1
    如果是IO密集型应用,则线程池大小设置为2N+1
    如果一台服务器上只部署这一个应用并且只有这一个线程池,那么这种估算或许合理,具体还需自行测试验证。

    接下来在这个文档:服务器性能IO优化 中发现一个估算公式:

    最佳线程数目 = ((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

    比如平均每个线程CPU运行时间为0.5s,而线程等待时间(非CPU运行时间,比如IO)为1.5s,CPU核心数为8,那么根据上面这个公式估算得到:((0.5+1.5)/0.5)*8=32。这个公式进一步转化为:

    最佳线程数目 = (线程等待时间与线程CPU时间之比 + 1)* CPU数目

    可以得出一个结论:

    线程等待时间所占比例越高,需要越多线程。线程CPU时间所占比例越高,需要越少线程。

    上一种估算方法也和这个结论相合。

    一个系统最快的部分是CPU,所以决定一个系统吞吐量上限的是CPU。增强CPU处理能力,可以提高系统吞吐量上限。但根据短板效应,真实的系统吞吐量并不能单纯根据CPU来计算。那要提高系统吞吐量,就需要从“系统短板”(比如网络延迟、IO)着手:

    尽量提高短板操作的并行化比率,比如多线程下载技术
    增强短板能力,比如用NIO替代IO
    第一条可以联系到Amdahl定律,这条定律定义了串行系统并行化后的加速比计算公式:

    加速比=优化前系统耗时 / 优化后系统耗时

    加速比越大,表明系统并行化的优化效果越好。Addahl定律还给出了系统并行度、CPU数目和加速比的关系,加速比为Speedup,系统串行化比率(指串行执行代码所占比率)为F,CPU数目为N:

    Speedup <= 1 / (F + (1-F)/N)

    当N足够大时,串行化比率F越小,加速比Speedup越大。

    写到这里,我突然冒出一个问题。

    是否使用线程池就一定比使用单线程高效呢?

    答案是否定的,比如Redis就是单线程的,但它却非常高效,基本操作都能达到十万量级/s。从线程这个角度来看,部分原因在于:

    • 多线程带来线程上下文切换开销,单线程就没有这种开销

    当然“Redis很快”更本质的原因在于:Redis基本都是内存操作,这种情况下单线程可以很高效地利用CPU。而多线程适用场景一般是:存在相当比例的IO和网络操作。

    所以即使有上面的简单估算方法,也许看似合理,但实际上也未必合理,都需要结合系统真实情况(比如是IO密集型或者是CPU密集型或者是纯内存操作)和硬件环境(CPU、内存、硬盘读写速度、网络状况等)来不断尝试达到一个符合实际的合理估算值。

    最后来一个“Dark Magic”估算方法(因为我暂时还没有搞懂它的原理),使用下面的类:

    
    import java.math.BigDecimal;
    import java.math.RoundingMode;
    import java.util.Timer;
    import java.util.TimerTask;
    import java.util.concurrent.BlockingQueue;
    
    /**
     * A class that calculates the optimal thread pool boundaries. It takes the
     * desired target utilization and the desired work queue memory consumption as
     * input and retuns thread count and work queue capacity.
     *
     * @author Niklas Schlimm
     */
    public abstract class PoolSizeCalculator {
    
        /**
         * The sample queue size to calculate the size of a single {@link Runnable}
         * element.
         */
        private final int SAMPLE_QUEUE_SIZE = 1000;
    
        /**
         * Accuracy of test run. It must finish within 20ms of the testTime
         * otherwise we retry the test. This could be configurable.
         */
        private final int EPSYLON = 20;
    
        /**
         * Control variable for the CPU time investigation.
         */
        private volatile boolean expired;
    
        /**
         * Time (millis) of the test run in the CPU time calculation.
         */
        private final long testtime = 3000;
    
        /**
         * Calculates the boundaries of a thread pool for a given {@link Runnable}.
         *
         * @param targetUtilization    the desired utilization of the CPUs (0 <= targetUtilization <= 1)
         * @param targetQueueSizeBytes the desired maximum work queue size of the thread pool (bytes)
         */
        protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {
            calculateOptimalCapacity(targetQueueSizeBytes);
            Runnable task = createTask();
            start(task);
            start(task); // warm up phase
            long cpuTime = getCurrentThreadCPUTime();
            start(task); // test intervally
            cpuTime = getCurrentThreadCPUTime() - cpuTime;
            long waitTime = (testtime * 1000000) - cpuTime;
            calculateOptimalThreadCount(cpuTime, waitTime, targetUtilization);
        }
    
        private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {
            long mem = calculateMemoryUsage();
            BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP);
            System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes);
            System.out.println("createTask() produced " + createTask().getClass().getName() + " which took " + mem + " bytes in a queue");
            System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);
            System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);
        }
    
        /**
         * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system
         */
        private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {
            BigDecimal waitTime = new BigDecimal(wait);
            BigDecimal computeTime = new BigDecimal(cpu);
            BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime().availableProcessors());
            BigDecimal optimalThreadCount = numberOfCPU.multiply(targetUtilization).multiply(new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));
            System.out.println("Number of CPU: " + numberOfCPU);
            System.out.println("Target utilization: " + targetUtilization);
            System.out.println("Elapsed time (nanos): " + (testtime * 1000000));
            System.out.println("Compute time (nanos): " + cpu);
            System.out.println("Wait time (nanos): " + wait);
            System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")");
            System.out.println("* Optimal thread count: " + optimalThreadCount);
        }
    
        /**
         * Runs the {@link Runnable} over a period defined in {@link #testtime}.
         * Based on Heinz Kabbutz' ideas
         * (http://www.javaspecialists.eu/archive/Issue124.html).
         *
         * @param task the runnable under investigation
         */
        public void start(Runnable task) {
            long start = 0;
            int runs = 0;
            do {
                if (++runs > 5) {
                    throw new IllegalStateException("Test not accurate");
                }
                expired = false;
                start = System.currentTimeMillis();
                Timer timer = new Timer();
                timer.schedule(new TimerTask() {
                    public void run() {
                        expired = true;
                    }
                }, testtime);
                while (!expired) {
                    task.run();
                }
                start = System.currentTimeMillis() - start;
                timer.cancel();
            } while (Math.abs(start - testtime) > EPSYLON);
            collectGarbage(3);
        }
    
        private void collectGarbage(int times) {
            for (int i = 0; i < times; i++) {
                System.gc();
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                    break;
                }
            }
        }
    
        /**
         * Calculates the memory usage of a single element in a work queue. Based on
         * Heinz Kabbutz' ideas
         * (http://www.javaspecialists.eu/archive/Issue029.html).
         *
         * @return memory usage of a single {@link Runnable} element in the thread
         * pools work queue
         */
        public long calculateMemoryUsage() {
            BlockingQueue queue = createWorkQueue();
            for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
                queue.add(createTask());
            }
            long mem0 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            long mem1 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            queue = null;
            collectGarbage(15);
            mem0 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            queue = createWorkQueue();
            for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
                queue.add(createTask());
            }
            collectGarbage(15);
            mem1 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
        }
    
        /**
         * Create your runnable task here.
         *
         * @return an instance of your runnable task under investigation
         */
        protected abstract Runnable createTask();
    
        /**
         * Return an instance of the queue used in the thread pool.
         *
         * @return queue instance
         */
        protected abstract BlockingQueue createWorkQueue();
    
        /**
         * Calculate current cpu time. Various frameworks may be used here,
         * depending on the operating system in use. (e.g.
         * http://www.hyperic.com/products/sigar). The more accurate the CPU time
         * measurement, the more accurate the results for thread count boundaries.
         *
         * @return current cpu time of current thread
         */
        protected abstract long getCurrentThreadCPUTime();
    }
    

    然后自己继承这个抽象类并实现它的三个抽象方法,比如下面是我写的一个示例(任务是请求网络数据),其中我指定期望CPU利用率为1.0(即100%),任务队列总大小不超过100,000字节:

    
    import java.io.BufferedReader;
    import java.io.IOException;
    import java.io.InputStreamReader;
    import java.lang.management.ManagementFactory;
    import java.math.BigDecimal;
    import java.net.HttpURLConnection;
    import java.net.URL;
    import java.util.concurrent.BlockingQueue;
    import java.util.concurrent.LinkedBlockingQueue;
    
    public class SimplePoolSizeCalculatorImpl extends PoolSizeCalculator {
    
        @Override
        protected Runnable createTask() {
            return new AsyncIOTask();
        }
    
        @Override
        protected BlockingQueue createWorkQueue() {
            return new LinkedBlockingQueue(1000);
        }
    
        @Override
        protected long getCurrentThreadCPUTime() {
            return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
        }
    
        public static void main(String[] args) {
            PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCalculatorImpl();
            poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
        }
    
    }
    
    /**
     * 自定义的异步IO任务
     * @author Will
     *
     */
    class AsyncIOTask implements Runnable {
    
        @Override
        public void run() {
            HttpURLConnection connection = null;
            BufferedReader reader = null;
            try {
                String getURL = "http://baidu.com";
                URL getUrl = new URL(getURL);
    
                connection = (HttpURLConnection) getUrl.openConnection();
                connection.connect();
                reader = new BufferedReader(new InputStreamReader(
                        connection.getInputStream()));
    
                String line;
                while ((line = reader.readLine()) != null) {
                    // empty loop
                }
            }
    
            catch (IOException e) {
    
            } finally {
                if(reader != null) {
                    try {
                        reader.close();
                    }
                    catch(Exception e) {
    
                    }
                }
                connection.disconnect();
            }
        }
    }
    

    得到的输出如下:

    Target queue memory usage (bytes): 100000
    createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue
    Formula: 100000 / 40
    * Recommended queue capacity (bytes): 2500
    Number of CPU: 4
    Target utilization: 1
    Elapsed time (nanos): 3000000000
    Compute time (nanos): 47181000
    Wait time (nanos): 2952819000
    Formula: 4 * 1 * (1 + 2952819000 / 47181000)
    * Optimal thread count: 256
    

    推荐的任务队列大小为2500,线程数为256,有点出乎意料之外。我可以如下构造一个线程池:

    ThreadPoolExecutor pool = 
    new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));
    

    转载 http://ifeve.com/how-to-calculate-threadpool-size/

    相关文章

      网友评论

          本文标题:如何合理地估算线程池大小

          本文链接:https://www.haomeiwen.com/subject/nesfwdtx.html