美文网首页
合理的估算Java线程池大小的方法

合理的估算Java线程池大小的方法

作者: 大侠陈 | 来源:发表于2019-04-18 19:03 被阅读0次

    网上有给出简单的线程池大小估算方法

    如果是CPU密集型应用,则线程池大小设置为N+1
    如果是IO密集型应用,则线程池大小设置为2N+1

    然而这两个公式显然是不管用的,除非整个CPU服务于一个线程池<br /> <br />管用的估算方法也有,但是比较复杂

    最佳线程数目 =((线程等待时间+线程CPU时间)/线程CPU时间 )* CPU数目

    此公式可进一步转换为

    最佳线程数目 =(线程等待时间与线程CPU时间之比 + 1)* CPU数目

    然而 线程等待时间 和 线程CPU时间 这两个变量却很难精确得到

    所幸网上已经有相关的程序帮我们自动通过上面的公式计算出结果

    估算类代码如下

    import java.math.BigDecimal;
    import java.math.RoundingMode;
    import java.util.Timer;
    import java.util.TimerTask;
    import java.util.concurrent.BlockingQueue;
    
    /**
     * A class that calculates the optimal thread pool boundaries. It takes the
     * desired target utilization and the desired work queue memory consumption as
     * input and retuns thread count and work queue capacity.
     *
     * @author Niklas Schlimm
     */
    public abstract class PoolSizeCalculator {
    
        /**
         * The sample queue size to calculate the size of a single {@link Runnable}
         * element.
         */
        private final int SAMPLE_QUEUE_SIZE = 1000;
    
        /**
         * Accuracy of test run. It must finish within 20ms of the testTime
         * otherwise we retry the test. This could be configurable.
         */
        private final int EPSYLON = 20;
    
        /**
         * Control variable for the CPU time investigation.
         */
        private volatile boolean expired;
    
        /**
         * Time (millis) of the test run in the CPU time calculation.
         */
        private final long testtime = 3000;
    
        /**
         * Calculates the boundaries of a thread pool for a given {@link Runnable}.
         *
         * @param targetUtilization the desired utilization of the CPUs (0 <= targetUtilization <=   *            1)     * @param targetQueueSizeBytes   *            the desired maximum work queue size of the thread pool (bytes)
         */
        protected void calculateBoundaries(BigDecimal targetUtilization, BigDecimal targetQueueSizeBytes) {
            calculateOptimalCapacity(targetQueueSizeBytes);
            Runnable task = creatTask();
            start(task);
            start(task); // warm up phase
            long cputime = getCurrentThreadCPUTime();
            start(task);
            // test intervall
            cputime = getCurrentThreadCPUTime() - cputime;
            long waittime = (testtime * 1000000) - cputime;
            calculateOptimalThreadCount(cputime, waittime, targetUtilization);
        }
    
        private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {
            long mem = calculateMemoryUsage();
            BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(mem), RoundingMode.HALF_UP);
            System.out.println("Target queue memory usage (bytes): " + targetQueueSizeBytes);
            System.out.println("createTask() produced " + creatTask().getClass().getName() + " which took " + mem + " bytes in a queue");
            System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem);
            System.out.println("* Recommended queue capacity (bytes): " + queueCapacity);
        }
    
        /**
         * Brian Goetz' optimal thread count formula, see 'Java Concurrency in   * Practice' (chapter 8.2)   *       * @param cpu    *            cpu time consumed by considered task   * @param wait   *            wait time of considered task   * @param targetUtilization      *            target utilization of the system
         */
        private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {
            BigDecimal waitTime = new BigDecimal(wait);
            BigDecimal computeTime = new BigDecimal(cpu);
            BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime().availableProcessors());
            BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization).multiply(new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));
            System.out.println("Number of CPU: " + numberOfCPU);
            System.out.println("Target utilization: " + targetUtilization);
            System.out.println("Elapsed time (nanos): " + (testtime * 1000000));
            System.out.println("Compute time (nanos): " + cpu);
            System.out.println("Wait time (nanos): " + wait);
            System.out.println("Formula: " + numberOfCPU + " * " + targetUtilization + " * (1 + " + waitTime + " / " + computeTime + ")");
            System.out.println("* Optimal thread count: " + optimalthreadcount);
        }
    
        /**
         * Runs the {@link Runnable} over a period defined in {@link #testtime}.     * Based on Heinz Kabbutz' ideas     * (http://www.javaspecialists.eu/archive/Issue124.html).    *       * @param task   *            the runnable under investigation
         */
        public void start(Runnable task) {
            long start = 0;
            int runs = 0;
            do {
                if (++runs > 5) {
                    throw new IllegalStateException("Test not accurate");
                }
                expired = false;
                start = System.currentTimeMillis();
                Timer timer = new Timer();
                timer.schedule(new TimerTask() {
                    public void run() {
                        expired = true;
                    }
                }, testtime);
                while (!expired) {
                    task.run();
                }
                start = System.currentTimeMillis() - start;
                timer.cancel();
            } while (Math.abs(start - testtime) > EPSYLON);
            collectGarbage(3);
        }
    
        private void collectGarbage(int times) {
            for (int i = 0; i < times; i++) {
                System.gc();
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                    break;
                }
            }
        }
    
        /**
         * Calculates the memory usage of a single element in a work queue. Based on
         * Heinz Kabbutz' ideas
         * (http://www.javaspecialists.eu/archive/Issue029.html).
         *
         * @return memory usage of a single {@link Runnable} element in the thread
         * pools work queue
         */
        public long calculateMemoryUsage() {
            BlockingQueue queue = createWorkQueue();
            for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
                queue.add(creatTask());
            }
            long mem0 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            long mem1 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            queue = null;
            collectGarbage(15);
            mem0 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            queue = createWorkQueue();
            for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {
                queue.add(creatTask());
            }
            collectGarbage(15);
            mem1 = Runtime.getRuntime().totalMemory()
                    - Runtime.getRuntime().freeMemory();
            return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;
        }
    
        /**
         * Create your runnable task here.
         *
         * @return an instance of your runnable task under investigation
         */
        protected abstract Runnable creatTask();
    
        /**
         * Return an instance of the queue used in the thread pool.
         *
         * @return queue instance
         */
        protected abstract BlockingQueue createWorkQueue();
    
        /**
         * Calculate current cpu time. Various frameworks may be used here,
         * depending on the operating system in use. (e.g.
         * http://www.hyperic.com/products/sigar). The more accurate the CPU time
         * measurement, the more accurate the results for thread count boundaries.
         *
         * @return current cpu time of current thread
         */
        protected abstract long getCurrentThreadCPUTime();
    }
    
    

    类使用方法如下

    import java.io.BufferedReader;
    import java.io.IOException;
    import java.io.InputStreamReader;
    import java.lang.management.ManagementFactory;
    import java.math.BigDecimal;
    import java.net.HttpURLConnection;
    import java.net.URL;
    import java.util.concurrent.BlockingQueue;
    import java.util.concurrent.LinkedBlockingQueue;
    
    class AsyncIOTask implements Runnable {
    
        @Override
        public void run() {
            HttpURLConnection connection = null;
            BufferedReader reader = null;
            try {
                String getURL = "https://www.baidu.com/";
                URL getUrl = new URL(getURL);
    
                connection = (HttpURLConnection) getUrl.openConnection();
                connection.connect();
                reader = new BufferedReader(new InputStreamReader(
                        connection.getInputStream()));
    
                String line;
                while ((line = reader.readLine()) != null) {
                    // empty loop
                }
            }
    
            catch (IOException e) {
    
            } finally {
                if(reader != null) {
                    try {
                        reader.close();
                    }
                    catch(Exception e) {
    
                    }
                }
                connection.disconnect();
            }
    
        }
    
    }
    
    
    public class Main extends PoolSizeCalculator{
    
        @Override
        protected Runnable creatTask() {
            return new AsyncIOTask();
        }
    
        @Override
        protected BlockingQueue createWorkQueue() {
            return new LinkedBlockingQueue(1000);
        }
    
        @Override
        protected long getCurrentThreadCPUTime() {
            return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();
        }
    
        public static void main(String[] args) {
            PoolSizeCalculator poolSizeCalculator = new Main();
            poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));
        }
    
    }
    
    

    在我的一台4核电脑PC上,当期望工作队列的大小不超过100KB的情况下,对于一系列请求百度的http任务,得出的结果如下

    Target queue memory usage (bytes): 100000
    createTask() produced AsyncIOTask which took 40 bytes in a queue
    Formula: 100000 / 40
    * Recommended queue capacity (bytes): 2500
    Number of CPU: 4
    Target utilization: 1
    Elapsed time (nanos): 3000000000
    Compute time (nanos): 125000000
    Wait time (nanos): 2875000000
    Formula: 4 * 1 * (1 + 2875000000 / 125000000)
    * Optimal thread count: 96
    

    工作队列的大小为:2500

    公式计算:4 * 1 * (1 + 2875000000 / 125000000)

    线程数池大小:96

    我们可以通过上面的结果创建如下线程池

    ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(96,96,0L,TimeUnit.SECONDS,new LinkedBlockingQueue<>(2500));
    

    参考链接:http://ifeve.com/how-to-calculate-threadpool-size/

    相关文章

      网友评论

          本文标题:合理的估算Java线程池大小的方法

          本文链接:https://www.haomeiwen.com/subject/qzxxgqtx.html