532. Reverse Pairs
For an array A, if i < j, and A [i] > A [j], called (A [i], A [j]) is a reverse pair.
return total of reverse pairs in A.
Example1
Input: A = [2, 4, 1, 3, 5]
Output: 3
Explanation:
(2, 1), (4, 1), (4, 3) are reverse pairs
Example2
Input: A = [1, 2, 3, 4]
Output: 0
Explanation:
No reverse pair
- 利用归并排序的思想求逆序对,复杂度O(nlogn)当然也可以用树状数组或者线段树求解
public class Solution {
public long reversePairs(int[] A) {
return mergeSort(A, 0, A.length - 1);
}
private int mergeSort(int[] A, int start, int end) {
if (start >= end) {
return 0;
}
int mid = (start + end) / 2;
int sum = 0;
sum += mergeSort(A, start, mid);
sum += mergeSort(A, mid+1, end);
sum += merge(A, start, mid, end);
return sum;
}
private int merge(int[] A, int start, int mid, int end) {
int[] temp = new int[A.length];
int leftIndex = start;
int rightIndex = mid + 1;
int index = start;
int sum = 0;
while (leftIndex <= mid && rightIndex <= end) {
if (A[leftIndex] <= A[rightIndex]) {
temp[index++] = A[leftIndex++];
} else {
temp[index++] = A[rightIndex++];
sum += mid - leftIndex + 1;
}
}
while (leftIndex <= mid) {
temp[index++] = A[leftIndex++];
}
while (rightIndex <= end) {
temp[index++] = A[rightIndex++];
}
for (int i = start; i <= end; i++) {
A[i] = temp[i];
}
return sum;
}
}
另一个写法:
//解法二
public class Solution {
/**
* @param A an array
* @return total of reverse pairs
*/
private static int[] aux;
int num = 0;
public long reversePairs(int[] A) {
// Write your code here
aux = new int[A.length];
sort(A,0,A.length-1);
return num;
}
private void sort(int[] a, int lo, int hi)
{
if (hi<=lo) return;
int mid = lo + (hi - lo)/2;
//递归
sort(a, lo, mid);//左半边排序
sort(a, mid+1, hi);//右半边排序
merge(a,lo,mid,hi);//归并结果
}
//归并算法
private void merge(int[] a, int lo, int mid, int hi){
int i = lo;
int j = mid + 1;
for(int k = lo; k <= hi; k++){
aux[k] = a[k];
}
//每次k,i或j都会右移一个
for (int k = lo; k <= hi; k++){
if (i>mid) a[k] = aux[j++];//如果左边归并完,则只添加右边
else if (j>hi) {
a[k] = aux[i++];//如果右边归并完,则只添加左边
}
//如果右边的小于左边的,则添加右边的
else if (aux[j] < aux[i]) {
a[k] = aux[j++];
//右边的小于左边的当前数,则他小于当前至mid的所有数,因为数组在合并时已经为有序的了。
num+=mid-i+1;
}
else a[k] = aux[i++];//如果左边的小于右边的,则添加左边的
}
}
}
网友评论