美文网首页
128篇21大领域必读论文【转】

128篇21大领域必读论文【转】

作者: 武耀文 | 来源:发表于2019-03-01 12:30 被阅读0次

    这份阅读列表的组织原则是这样的:
    从全局到枝干: 从综述类、全局性的文章到细分领域的具体论文。
    从经典到最前沿: 每个话题的文章都是按时间顺序来排的,可以清晰给出每个方向的发展脉络。
    从通用理论到具体应用: 有些论文是针对深度学习通用理论的,有些论文章则针对具体的应用领域。
    专注于最先进的研究: 收集有许多最新论文,保证阅读列表的时效性。
    当然,这里的每个话题都只选几篇最具代表性的论文,深入研究的话,还需要更进一步的阅读。
    基于这些论文的影响力,你会发现很多新近发表的文章也值得一读。 此外,这份阅读列表在原文页面会不断更新,值得你时时备查。
    https://github.com/songrotek/Deep-Learning-Papers-Reading-Roadmap
    想一键打包下载所有的论文?没问题, AI科技大本营已经给你准备好了懒人专属通道。请在公众号会话回复“ 路径 ”,即可获取本文所有论文PDF资料。

    1. 深度学习基础及历史
      1.0 书
      [0] 深度学习圣经 ★★★★★
      Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. “Deep learning.” An MIT Press book. (2015).
      https://github.com/HFTrader/DeepLearningBook/raw/master/DeepLearningBook.pdf
      1.1 报告
      [1] 三巨头报告 ★★★★★
      LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature 521.7553 (2015): 436-444.
      http://www.cs.toronto.edu/%7Ehinton/absps/NatureDeepReview.pdf
      1.2 深度信念网络 (DBN)
      [2] 深度学习前夜的里程碑 ★★★
      Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep belief nets.” Neural computation 18.7 (2006): 1527-1554.
      http://www.cs.toronto.edu/%7Ehinton/absps/ncfast.pdf
      [3] 展示深度学习前景的里程碑 ★★★
      Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the dimensionality of data with neural networks.” Science 313.5786 (2006): 504-507.
      http://www.cs.toronto.edu/%7Ehinton/science.pdf
      1.3 ImageNet革命(深度学习大爆炸)
      [4] AlexNet的深度学习突破 ★★★
      Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012.
      http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
      [5] VGGNet深度神经网络出现 ★★★
      Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).
      https://arxiv.org/pdf/1409.1556.pdf
      [6] GoogLeNet ★★★
      Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
      http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf
      [7] ResNet极深度神经网络,CVPR最佳论文 ★★★★★
      He, Kaiming, et al. “Deep residual learning for image recognition.” arXiv preprint arXiv:1512.03385 (2015).
      https://arxiv.org/pdf/1512.03385.pdf
      1.4 语音识别革命
      [8] 语音识别突破 ★★★★
      Hinton, Geoffrey, et al. “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.” IEEE Signal Processing Magazine 29.6 (2012): 82-97.
      http://cs224d.stanford.edu/papers/maas_paper.pdf
      [9] RNN论文 ★★★
      Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with deep recurrent neural networks.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.
      http://arxiv.org/pdf/1303.5778.pdf
      [10] 端对端RNN语音识别 ★★★
      Graves, Alex, and Navdeep Jaitly. “Towards End-To-End Speech Recognition with Recurrent Neural Networks.” ICML. Vol. 14. 2014.
      http://www.jmlr.org/proceedings/papers/v32/graves14.pdf
      [11] Google语音识别系统论文 ★★★
      Sak, Haşim, et al. “Fast and accurate recurrent neural network acoustic models for speech recognition.” arXiv preprint arXiv:1507.06947 (2015).
      http://arxiv.org/pdf/1507.06947
      [12] 百度语音识别系统论文 ★★★★
      Amodei, Dario, et al. “Deep speech 2: End-to-end speech recognition in english and mandarin.” arXiv preprint arXiv:1512.02595 (2015).
      https://arxiv.org/pdf/1512.02595.pdf
      [13] 来自微软的当下最先进的语音识别论文 ★★★★
      W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig “Achieving Human Parity in Conversational Speech Recognition.” arXiv preprint arXiv:1610.05256 (2016).
      https://arxiv.org/pdf/1610.05256v1
      读完上面这些论文,你将对 深度学习的历史、深度学习模型(CNN、RNN、LSTM等)的基本架构 有一个基本认识, 并能理解深度学习是如何解决图像及语音识别问题的 。接下来的 论文将 带你深入理解深度学习方法、深度学习在前沿领域的不同应用。根据自己的兴趣和研究方向选择阅读即可:
    2. 深度学习方法
      2.1 模型
      [14] Dropout ★★★
      Hinton, Geoffrey E., et al. “Improving neural networks by preventing co-adaptation of feature detectors.” arXiv preprint arXiv:1207.0580 (2012).
      https://arxiv.org/pdf/1207.0580.pdf
      [15] 过拟合 ★★★
      Srivastava, Nitish, et al. “Dropout: a simple way to prevent neural networks from overfitting.” Journal of Machine Learning Research 15.1 (2014): 1929-1958.
      http://www.jmlr.org/papers/volume15/srivastava14a.old/source/srivastava14a.pdf
      [16] Batch归一化——2015年杰出成果 ★★★★
      Ioffe, Sergey, and Christian Szegedy. “Batch normalization: Accelerating deep network training by reducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).
      http://arxiv.org/pdf/1502.03167
      [17] Batch归一化的升级 ★★★★
      Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. “Layer normalization.” arXiv preprint arXiv:1607.06450 (2016).
      https://arxiv.org/pdf/1607.06450.pdf
      [18] 快速训练新模型 ★★★
      Courbariaux, Matthieu, et al. “Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or−1.”
      https://pdfs.semanticscholar.org/f832/b16cb367802609d91d400085eb87d630212a.pdf
      [19] 训练方法创新 ★★★★★
      Jaderberg, Max, et al. “Decoupled neural interfaces using synthetic gradients.” arXiv preprint arXiv:1608.05343 (2016).
      https://arxiv.org/pdf/1608.05343
      [20] 修改预训练网络以降低训练耗时 ★★★
      Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. “Net2net: Accelerating learning via knowledge transfer.” arXiv preprint arXiv:1511.05641 (2015).
      https://arxiv.org/abs/1511.05641
      [21] 修改预训练网络以降低训练耗时 ★★★
      Wei, Tao, et al. “Network Morphism.” arXiv preprint arXiv:1603.01670 (2016).
      https://arxiv.org/abs/1603.01670
      2.2 优化
      [22] 动量优化器 ★★
      Sutskever, Ilya, et al. “On the importance of initialization and momentum in deep learning.” ICML (3) 28 (2013): 1139-1147.
      http://www.jmlr.org/proceedings/papers/v28/sutskever13.pdf
      [23] 可能是当前使用最多的随机优化 ★★★
      Kingma, Diederik, and Jimmy Ba. “Adam: A method for stochastic optimization.” arXiv preprint arXiv:1412.6980 (2014).
      http://arxiv.org/pdf/1412.6980
      [24] 神经优化器 ★★★★★
      Andrychowicz, Marcin, et al. “Learning to learn by gradient descent by gradient descent.” arXiv preprint arXiv:1606.04474 (2016).
      https://arxiv.org/pdf/1606.04474
      [25] ICLR最佳论文,让神经网络运行更快的新方向 ★★★★★
      Han, Song, Huizi Mao, and William J. Dally. “Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding.” CoRR, abs/1510.00149 2 (2015).
      https://pdfs.semanticscholar.org/5b6c/9dda1d88095fa4aac1507348e498a1f2e863.pdf
      [26] 优化神经网络的另一个新方向 ★★★★
      Iandola, Forrest N., et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<1MB model size." arXiv preprint arXiv:1602.07360 (2016).
      http://arxiv.org/pdf/1602.07360
      2.3 无监督学习 / 深度生成式模型
      [27] Google Brain找猫的里程碑论文,吴恩达 ★★★★
      Le, Quoc V. “Building high-level features using large scale unsupervised learning.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013.
      http://arxiv.org/pdf/1112.6209.pdf
      [28] 变分自编码机 (VAE) ★★★★
      Kingma, Diederik P., and Max Welling. “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).
      http://arxiv.org/pdf/1312.6114
      [29] 生成式对抗网络 (GAN) ★★★★★
      Goodfellow, Ian, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014.
      http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
      [30] 解卷积生成式对抗网络 (DCGAN) ★★★★
      Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv preprint arXiv:1511.06434 (2015).
      http://arxiv.org/pdf/1511.06434
      [31] Attention机制的变分自编码机 ★★★★★
      Gregor, Karol, et al. “DRAW: A recurrent neural network for image generation.” arXiv preprint arXiv:1502.04623 (2015).
      http://jmlr.org/proceedings/papers/v37/gregor15.pdf
      [32] PixelRNN ★★★★
      Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. “Pixel recurrent neural networks.” arXiv preprint arXiv:1601.06759 (2016).
      http://arxiv.org/pdf/1601.06759
      [33] PixelCNN ★★★★
      Oord, Aaron van den, et al. “Conditional image generation with PixelCNN decoders.” arXiv preprint arXiv:1606.05328 (2016).
      https://arxiv.org/pdf/1606.05328
      2.4 RNN / 序列到序列模型
      [34] RNN的生成式序列,LSTM ★★★★
      Graves, Alex. “Generating sequences with recurrent neural networks.” arXiv preprint arXiv:1308.0850 (2013).
      http://arxiv.org/pdf/1308.0850
      [35] 第一份序列到序列论文 ★★★★
      Cho, Kyunghyun, et al. “Learning phrase representations using RNN encoder-decoder for statistical machine translation.” arXiv preprint arXiv:1406.1078 (2014).
      http://arxiv.org/pdf/1406.1078
      [36] 神经网络的序列到序列学习 ★★★★★
      Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.” Advances in neural information processing systems. 2014.
      http://papers.nips.cc/paper/5346-information-based-learning-by-agents-in-unbounded-state-spaces.pdf
      [37] 神经机器翻译 ★★★★
      Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. “Neural Machine Translation by Jointly Learning to Align and Translate.” arXiv preprint arXiv:1409.0473 (2014).
      https://arxiv.org/pdf/1409.0473v7.pdf
      [38] 序列到序列Chatbot ★★★
      Vinyals, Oriol, and Quoc Le. “A neural conversational model.” arXiv preprint arXiv:1506.05869 (2015).
      http://arxiv.org/pdf/1506.05869.pdf%20(http://arxiv.org/pdf/1506.05869.pdf
      2.5 神经网络图灵机
      [39] 未来计算机的基本原型 ★★★★★
      Graves, Alex, Greg Wayne, and Ivo Danihelka. “Neural turing machines.” arXiv preprint arXiv:1410.5401 (2014).
      http://arxiv.org/pdf/1410.5401.pdf
      [40] 强化学习神经图灵机 ★★★
      Zaremba, Wojciech, and Ilya Sutskever. “Reinforcement learning neural Turing machines.” arXiv preprint arXiv:1505.00521 362 (2015).
      https://pdfs.semanticscholar.org/f10e/071292d593fef939e6ef4a59baf0bb3a6c2b.pdf
      [41] 记忆网络 ★★★
      Weston, Jason, Sumit Chopra, and Antoine Bordes. “Memory networks.” arXiv preprint arXiv:1410.3916 (2014).
      http://arxiv.org/pdf/1410.3916
      [42] 端对端记忆网络 ★★★★
      Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. “End-to-end memory networks.” Advances in neural information processing systems. 2015.
      http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf
      [43] 指针网络 ★★★★
      Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. “Pointer networks.” Advances in Neural Information Processing Systems. 2015.
      http://papers.nips.cc/paper/5866-pointer-networks.pdf
      [44] 整合神经网络图灵机概念的里程碑论文 ★★★★★
      Graves, Alex, et al. “Hybrid computing using a neural network with dynamic external memory.” Nature (2016).
      https://www.dropbox.com/s/0a40xi702grx3dq/2016-graves.pdf
      2.6 深度强化学习
      [45] 第一篇以深度强化学习为名的论文 ★★★★
      Mnih, Volodymyr, et al. “Playing atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602 (2013).
      http://arxiv.org/pdf/1312.5602.pdf
      [46] 里程碑 ★★★★★
      Mnih, Volodymyr, et al. “Human-level control through deep reinforcement learning.” Nature 518.7540 (2015): 529-533.
      https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf
      [47] ICLR最佳论文 ★★★★
      Wang, Ziyu, Nando de Freitas, and Marc Lanctot. “Dueling network architectures for deep reinforcement learning.” arXiv preprint arXiv:1511.06581 (2015).
      http://arxiv.org/pdf/1511.06581
      [48] 当前最先进的深度强化学习方法 ★★★★★
      Mnih, Volodymyr, et al. “Asynchronous methods for deep reinforcement learning.” arXiv preprint arXiv:1602.01783 (2016).
      http://arxiv.org/pdf/1602.01783
      [49] DDPG ★★★★
      Lillicrap, Timothy P., et al. “Continuous control with deep reinforcement learning.” arXiv preprint arXiv:1509.02971 (2015).
      http://arxiv.org/pdf/1509.02971
      [50] NAF ★★★★
      Gu, Shixiang, et al. “Continuous Deep Q-Learning with Model-based Acceleration.” arXiv preprint arXiv:1603.00748 (2016).
      http://arxiv.org/pdf/1603.00748
      [51] TRPO ★★★★
      Schulman, John, et al. “Trust region policy optimization.” CoRR, abs/1502.05477 (2015).
      http://www.jmlr.org/proceedings/papers/v37/schulman15.pdf
      [52] AlphaGo ★★★★★
      Silver, David, et al. “Mastering the game of Go with deep neural networks and tree search.” Nature 529.7587 (2016): 484-489.
      http://willamette.edu/%7Elevenick/cs448/goNature.pdf
      2.7 深度迁移学习 / 终生学习 / 强化学习
      [53] Bengio教程 ★★★
      Bengio, Yoshua. “Deep Learning of Representations for Unsupervised and Transfer Learning.” ICML Unsupervised and Transfer Learning 27 (2012): 17-36.
      http://www.jmlr.org/proceedings/papers/v27/bengio12a/bengio12a.pdf
      [54] 终生学习的简单讨论 ★★★
      Silver, Daniel L., Qiang Yang, and Lianghao Li. “Lifelong Machine Learning Systems: Beyond Learning Algorithms.” AAAI Spring Symposium: Lifelong Machine Learning. 2013.
      http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.7800&rep=rep1&type=pdf
      [55] Hinton、Jeff Dean大神研究 ★★★★
      Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network.” arXiv preprint arXiv:1503.02531 (2015).
      http://arxiv.org/pdf/1503.02531
      [56] 强化学习策略 ★★★
      Rusu, Andrei A., et al. “Policy distillation.” arXiv preprint arXiv:1511.06295 (2015).
      http://arxiv.org/pdf/1511.06295
      [57] 多任务深度迁移强化学习 ★★★
      Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. “Actor-mimic: Deep multitask and transfer reinforcement learning.” arXiv preprint arXiv:1511.06342 (2015).
      http://arxiv.org/pdf/1511.06342
      [58] 累进式神经网络 ★★★★★
      Rusu, Andrei A., et al. “Progressive neural networks.” arXiv preprint arXiv:1606.04671 (2016).
      https://arxiv.org/pdf/1606.04671
      2.8 一次性深度学习
      [59] 不涉及深度学习,但值得一读 ★★★★★
      Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. “Human-level concept learning through probabilistic program induction.” Science 350.6266 (2015): 1332-1338.
      http://clm.utexas.edu/compjclub/wp-content/uploads/2016/02/lake2015.pdf
      [60] 一次性图像识别 ★★★
      Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. “Siamese Neural Networks for One-shot Image Recognition.”(2015)
      http://www.cs.utoronto.ca/%7Egkoch/files/msc-thesis.pdf
      [61] 一次性学习基础 ★★★★
      Santoro, Adam, et al. “One-shot Learning with Memory-Augmented Neural Networks.” arXiv preprint arXiv:1605.06065 (2016).
      http://arxiv.org/pdf/1605.06065
      [62] 一次性学习网络 ★★★
      Vinyals, Oriol, et al. “Matching Networks for One Shot Learning.” arXiv preprint arXiv:1606.04080 (2016).
      https://arxiv.org/pdf/1606.04080
      [63] 大型数据 ★★★★
      Hariharan, Bharath, and Ross Girshick. “Low-shot visual object recognition.” arXiv preprint arXiv:1606.02819 (2016).
      http://arxiv.org/pdf/1606.02819
    3. 应用
      3.1 自然语言处理 (NLP)
      [1] ★★★★
      Antoine Bordes, et al. “Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing.” AISTATS(2012)
      https://www.hds.utc.fr/%7Ebordesan/dokuwiki/lib/exe/fetch.php?id=en%3Apubli&cache=cache&media=en:bordes12aistats.pdf
      [2] ★★★
      word2vec
      Mikolov, et al. “Distributed representations of words and phrases and their compositionality.” ANIPS(2013): 3111-3119
      http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
      [3] ★★★
      Sutskever, et al. “Sequence to sequence learning with neural networks.” ANIPS(2014)
      http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
      [4] ★★★★
      Ankit Kumar, et al. “Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.” arXiv preprint arXiv:1506.07285(2015)
      https://arxiv.org/abs/1506.07285
      [5] ★★★★
      Yoon Kim, et al. “Character-Aware Neural Language Models.” NIPS(2015) arXiv preprint arXiv:1508.06615(2015)
      https://arxiv.org/abs/1508.06615
      [6] bAbI任务 ★★★
      Jason Weston, et al. “Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks.” arXiv preprint arXiv:1502.05698(2015)
      https://arxiv.org/abs/1502.05698
      [7] CNN / DailyMail 风格对比 ★★
      Karl Moritz Hermann, et al. “Teaching Machines to Read and Comprehend.” arXiv preprint arXiv:1506.03340(2015)
      https://arxiv.org/abs/1506.03340
      [8] 当前最先进的文本分类 ★★★
      Alexis Conneau, et al. “Very Deep Convolutional Networks for Natural Language Processing.” arXiv preprint arXiv:1606.01781(2016)
      https://arxiv.org/abs/1606.01781
      [9] 稍次于最先进方案,但速度快很多 ★★★
      Armand Joulin, et al. “Bag of Tricks for Efficient Text Classification.” arXiv preprint arXiv:1607.01759(2016)
      https://arxiv.org/abs/1607.01759
      3.2 目标检测
      [1] ★★★
      Szegedy, Christian, Alexander Toshev, and Dumitru Erhan. “Deep neural networks for object detection.” Advances in Neural Information Processing Systems. 2013.
      http://papers.nips.cc/paper/5207-deep-neural-networks-for-object-detection.pdf
      [2] RCNN ★★★ ★★
      Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014.
      http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf
      [3] SPPNet ★★★ ★
      He, Kaiming, et al. “Spatial pyramid pooling in deep convolutional networks for visual recognition.” European Conference on Computer Vision. Springer International Publishing, 2014.
      http://arxiv.org/pdf/1406.4729
      [4] ★★★ ★
      Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015.
      https://pdfs.semanticscholar.org/8f67/64a59f0d17081f2a2a9d06f4ed1cdea1a0ad.pdf
      [5] ★★★ ★
      Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in neural information processing systems. 2015.
      http://papers.nips.cc/paper/5638-analysis-of-variational-bayesian-latent-dirichlet-allocation-weaker-sparsity-than-map.pdf
      [6] 相当实用的YOLO项目 ★★★ ★★
      Redmon, Joseph, et al. “You only look once: Unified, real-time object detection.” arXiv preprint arXiv:1506.02640 (2015).
      http://homes.cs.washington.edu/%7Eali/papers/YOLO.pdf
      [7] ★★★
      Liu, Wei, et al. “SSD: Single Shot MultiBox Detector.” arXiv preprint arXiv:1512.02325 (2015).
      http://arxiv.org/pdf/1512.02325
      [8] ★★★ ★
      Dai, Jifeng, et al. “R-FCN: Object Detection via Region-based Fully Convolutional Networks.” arXiv preprint arXiv:1605.06409 (2016).
      https://arxiv.org/abs/1605.06409
      [9] ★★★ ★
      He, Gkioxari, et al. “Mask R-CNN” arXiv preprint arXiv:1703.06870 (2017).
      https://arxiv.org/abs/1703.06870
      3.3 视觉追踪
      [1] 第一份采用深度学习的视觉追踪论文,DLT追踪器 ★★★
      Wang, Naiyan, and Dit-Yan Yeung. “Learning a deep compact image representation for visual tracking.” Advances in neural information processing systems. 2013.
      http://papers.nips.cc/paper/5192-learning-a-deep-compact-image-representation-for-visual-tracking.pdf
      [2] SO-DLT ★★★ ★
      Wang, Naiyan, et al. “Transferring rich feature hierarchies for robust visual tracking.” arXiv preprint arXiv:1501.04587 (2015).
      http://arxiv.org/pdf/1501.04587
      [3] FCNT ★★★ ★
      Wang, Lijun, et al. “Visual tracking with fully convolutional networks.” Proceedings of the IEEE International Conference on Computer Vision. 2015.
      http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Wang_Visual_Tracking_With_ICCV_2015_paper.pdf
      [4] 跟深度学习一样快的非深度学习方法,GOTURN ★★★ ★
      Held, David, Sebastian Thrun, and Silvio Savarese. “Learning to Track at 100 FPS with Deep Regression Networks.” arXiv preprint arXiv:1604.01802 (2016).
      http://arxiv.org/pdf/1604.01802
      [5] 新的最先进的实时目标追踪方案 SiameseFC ★★★ ★
      Bertinetto, Luca, et al. “Fully-Convolutional Siamese Networks for Object Tracking.” arXiv preprint arXiv:1606.09549 (2016).
      https://arxiv.org/pdf/1606.09549
      [6] C-COT ★★★ ★
      Martin Danelljan, Andreas Robinson, Fahad Khan, Michael Felsberg. “Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking.” ECCV (2016)
      http://www.cvl.isy.liu.se/research/objrec/visualtracking/conttrack/C-COT_ECCV16.pdf
      [7] VOT2016大赛冠军 TCNN ★★★ ★
      Nam, Hyeonseob, Mooyeol Baek, and Bohyung Han. “Modeling and Propagating CNNs in a Tree Structure for Visual Tracking.” arXiv preprint arXiv:1608.07242 (2016).
      https://arxiv.org/pdf/1608.07242
      3.4 图像标注
      [1] ★★★
      Farhadi,Ali,etal. “Every picture tells a story: Generating sentences from images”. In Computer VisionECCV 201 match 0. Sp match ringer Berlin Heidelberg:15-29, 2010.
      https://www.cs.cmu.edu/%7Eafarhadi/papers/sentence.pdf
      [2] ★★★ ★
      Kulkarni, Girish, et al. “Baby talk: Understanding and generating image descriptions”. In Proceedings of the 24th CVPR, 2011.
      http://tamaraberg.com/papers/generation_cvpr11.pdf
      [3] ★★★
      Vinyals, Oriol, et al. “Show and tell: A neural image caption generator”. In arXiv preprint arXiv:1411.4555, 2014.
      https://arxiv.org/pdf/1411.4555.pdf
      [4] RNN视觉识别与标注
      Donahue, Jeff, et al. “Long-term recurrent convolutional networks for visual recognition and description”. In arXiv preprint arXiv:1411.4389 ,2014.
      https://arxiv.org/pdf/1411.4389.pdf
      [5] 李飞飞及高徒Andrej Karpathy ★★★ ★★
      Karpathy, Andrej, and Li Fei-Fei. “Deep visual-semantic alignments for generating image descriptions”. In arXiv preprint arXiv:1412.2306, 2014.
      https://cs.stanford.edu/people/karpathy/cvpr2015.pdf
      [6] 李飞飞及高徒Andrej Karpathy ★★★ ★
      Karpathy, Andrej, Armand Joulin, and Fei Fei F. Li. “Deep fragment embeddings for bidirectional image sentence mapping”. In Advances in neural information processing systems, 2014.
      https://arxiv.org/pdf/1406.5679v1.pdf
      [7] ★★★ ★
      Fang, Hao, et al. “From captions to visual concepts and back”. In arXiv preprint arXiv:1411.4952, 2014.
      https://arxiv.org/pdf/1411.4952v3.pdf
      [8] ★★★ ★
      Chen, Xinlei, and C. Lawrence Zitnick. “Learning a recurrent visual representation for image caption generation”. In arXiv preprint arXiv:1411.5654, 2014.
      https://arxiv.org/pdf/1411.5654v1.pdf
      [9] ★★★
      Mao, Junhua, et al. “Deep captioning with multimodal recurrent neural networks (m-rnn)”. In arXiv preprint arXiv:1412.6632, 2014.
      https://arxiv.org/pdf/1412.6632v5.pdf
      [10] ★★★ ★★
      Xu, Kelvin, et al. “Show, attend and tell: Neural image caption generation with visual attention”. In arXiv preprint arXiv:1502.03044, 2015.
      https://arxiv.org/pdf/1502.03044v3.pdf
      3.5 机器翻译
      本话题的部分里程碑论文列在 2.4 “RNN / 序列到序列模型”话题下。
      [1] ★★★ ★
      Luong, Minh-Thang, et al. “Addressing the rare word problem in neural machine translation.” arXiv preprint arXiv:1410.8206 (2014).
      http://arxiv.org/pdf/1410.8206
      [2] ★★★
      Sennrich, et al. “Neural Machine Translation of Rare Words with Subword Units”. In arXiv preprint arXiv:1508.07909, 2015.
      https://arxiv.org/pdf/1508.07909.pdf
      [3] ★★★ ★
      Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. “Effective approaches to attention-based neural machine translation.” arXiv preprint arXiv:1508.04025 (2015).
      http://arxiv.org/pdf/1508.04025
      [4] ★★
      Chung, et al. “A Character-Level Decoder without Explicit Segmentation for Neural Machine Translation”. In arXiv preprint arXiv:1603.06147, 2016.
      https://arxiv.org/pdf/1603.06147.pdf
      [5] ★★★ ★★
      Lee, et al. “Fully Character-Level Neural Machine Translation without Explicit Segmentation”. In arXiv preprint arXiv:1610.03017, 2016.
      https://arxiv.org/pdf/1610.03017.pdf
      [6] 里程碑 ★★★ ★
      Wu, Schuster, Chen, Le, et al. “Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation”. In arXiv preprint arXiv:1609.08144v2, 2016.
      https://arxiv.org/pdf/1609.08144v2.pdf
      3.6 机器人
      [1] ★★★
      Koutník, Jan, et al. “Evolving large-scale neural networks for vision-based reinforcement learning.” Proceedings of the 15th annual conference on Genetic and evolutionary computation. ACM, 2013.
      http://repository.supsi.ch/4550/1/koutnik2013gecco.pdf
      [2] ★★★ ★★
      Levine, Sergey, et al. “End-to-end training of deep visuomotor policies.” Journal of Machine Learning Research 17.39 (2016): 1-40.
      http://www.jmlr.org/papers/volume17/15-522/15-522.pdf
      [3] ★★★
      Pinto, Lerrel, and Abhinav Gupta. “Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours.” arXiv preprint arXiv:1509.06825 (2015).
      http://arxiv.org/pdf/1509.06825
      [4] ★★★ ★
      Levine, Sergey, et al. “Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection.” arXiv preprint arXiv:1603.02199 (2016).
      http://arxiv.org/pdf/1603.02199
      [5] ★★★ ★
      Zhu, Yuke, et al. “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning.” arXiv preprint arXiv:1609.05143 (2016).
      https://arxiv.org/pdf/1609.05143
      [6] ★★★ ★
      Yahya, Ali, et al. “Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search.” arXiv preprint arXiv:1610.00673 (2016).
      https://arxiv.org/pdf/1610.00673
      [7] ★★★ ★
      Gu, Shixiang, et al. “Deep Reinforcement Learning for Robotic Manipulation.” arXiv preprint arXiv:1610.00633 (2016).
      https://arxiv.org/pdf/1610.00633
      [8] ★★★ ★
      A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell.”Sim-to-Real Robot Learning from Pixels with Progressive Nets.” arXiv preprint arXiv:1610.04286 (2016).
      https://arxiv.org/pdf/1610.04286.pdf
      [9] ★★★ ★
      Mirowski, Piotr, et al. “Learning to navigate in complex environments.” arXiv preprint arXiv:1611.03673 (2016).
      https://arxiv.org/pdf/1611.03673
      3.7 艺术
      [1] Google Deep Dream ★★★ ★
      Mordvintsev, Alexander; Olah, Christopher; Tyka, Mike (2015). “Inceptionism: Going Deeper into Neural Networks”. Google Research.
      https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
      [2] 当前最为成功的艺术风格迁移方案,Prisma ★★★ ★★
      Gatys, Leon A., Alexander S. Ecker, and Matthias Bethge. “A neural algorithm of artistic style.” arXiv preprint arXiv:1508.06576 (2015).
      http://arxiv.org/pdf/1508.06576
      [3] iGAN ★★★ ★
      Zhu, Jun-Yan, et al. “Generative Visual Manipulation on the Natural Image Manifold.” European Conference on Computer Vision. Springer International Publishing, 2016.
      https://arxiv.org/pdf/1609.03552
      [4] Neural Doodle ★★★ ★
      Champandard, Alex J. “Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks.” arXiv preprint arXiv:1603.01768 (2016).
      http://arxiv.org/pdf/1603.01768
      [5] ★★★ ★
      Zhang, Richard, Phillip Isola, and Alexei A. Efros. “Colorful Image Colorization.” arXiv preprint arXiv:1603.08511 (2016).
      http://arxiv.org/pdf/1603.08511
      [6] 超分辨率,李飞飞 ★★★ ★
      Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. “Perceptual losses for real-time style transfer and super-resolution.” arXiv preprint arXiv:1603.08155 (2016).
      https://arxiv.org/pdf/1603.08155.pdf
      [7] ★★★ ★
      Vincent Dumoulin, Jonathon Shlens and Manjunath Kudlur. “A learned representation for artistic style.” arXiv preprint arXiv:1610.07629 (2016).
      https://arxiv.org/pdf/1610.07629v1.pdf
      [8] 基于空间位置、色彩信息与空间尺度的风格迁移 ★★★ ★
      Gatys, Leon and Ecker, et al.”Controlling Perceptual Factors in Neural Style Transfer.” arXiv preprint arXiv:1611.07865 (2016).
      https://arxiv.org/pdf/1611.07865.pdf
      [9] 纹理生成与风格迁移 ★★★ ★
      Ulyanov, Dmitry and Lebedev, Vadim, et al. “Texture Networks: Feed-forward Synthesis of Textures and Stylized Images.” arXiv preprint arXiv:1603.03417(2016).
      http://arxiv.org/abs/1603.03417
      3.8 目标分割
      [1] ★★★ ★★
      J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation.” in CVPR, 2015.
      https://arxiv.org/pdf/1411.4038v2.pdf
      [2] ★★★ ★★
      L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. “Semantic image segmentation with deep convolutional nets and fully connected crfs.” In ICLR, 2015.
      https://arxiv.org/pdf/1606.00915v1.pdf
      [3] ★★★ ★
      Pinheiro, P.O., Collobert, R., Dollar, P. “Learning to segment object candidates.” In: NIPS. 2015.
      https://arxiv.org/pdf/1506.06204v2.pdf
      [4] ★★★
      Dai, J., He, K., Sun, J. “Instance-aware semantic segmentation via multi-task network cascades.” in CVPR. 2016
      https://arxiv.org/pdf/1512.04412v1.pdf
      [5] ★★★
      Dai, J., He, K., Sun, J. “Instance-sensitive Fully Convolutional Networks.” arXiv preprint arXiv:1603.08678 (2016).
      https://arxiv.org/pdf/1603.08678v1.pdf

    相关文章

      网友评论

          本文标题:128篇21大领域必读论文【转】

          本文链接:https://www.haomeiwen.com/subject/nfcduqtx.html