美文网首页算法和数据结构
数据库索引的存储结构:B+树

数据库索引的存储结构:B+树

作者: one_zheng | 来源:发表于2019-02-14 10:36 被阅读1次

  数据库索引为什么要用树结构来做存储? (InnoDB引擎使用的是B+树)

  • 1.树的查询效率高.

  • 2.可以保持有序

  二叉查找树跟B数的时间复杂度都是O(logn),为什么使用的是B树,而不是二叉查找树?

  磁盘I/O消耗比较小.(一颗完全二叉树的高度大约是logN,而一个完全M叉树的高度大约是logᴍN)
  数据库索引是存储在磁盘上的,索引的大小可能有几个G甚至更多.当我们利用索引查询的时候,不可能将整个索引全部加载到内存中,只能逐一加载每一个磁盘页,这里的磁盘页对应着索引树的节点.
  如果我们利用二叉查找树作为索引结构,当树的高度是4,查找的值是10,流程如下:

                  二叉查找树的结构:


二叉查找树的结构.png

                       第1次磁盘I/O:

第1次磁盘I/O.png

                       第2次磁盘I/O:

第2次磁盘I/O.png

                       第3次磁盘I/O:


第3次磁盘I/O.png

                       第4次磁盘I/O:

第4次磁盘I/O.png

  而B树是一种多路平衡查找数,它的每一个节点最多包含k个孩子,k被称为B树的阶.k的大小取决于磁盘页的大小.

  一个m阶的B树具有如下几个特征:

  • 1.根节点至少有两个子女.
  • 2.每个中间节点包含k-1个元素和k个孩子,其中m/2<=k<=m.
  • 3.每一个叶子节点都包含k-1个元素,其中m/2<=k<=m.
  • 4.所有的叶子节点都位于同一层.
  • 5.每个节点中的元素从小到大排序,节点当中k-1个元素正好是k个孩子包含的元素的值域划分.

一个3阶的B-树:

image.png

  如果我们利用B-树作为索引结构,查询的数值是5,流程如下:

                        第1次磁盘I/O:


第1次磁盘I/O.png

                       在内存中定位(和9比较):


在内存中定位(和9比较).png

                         第2次磁盘I/O:


第2次磁盘I/O:.png

                       在内存中定位(和2,6比较):


在内存中定位(和2,6比较).png

                          第3次磁盘I/O:

第3次磁盘I/O.png

                       在内存中定位(和3,5比较):


在内存中定位(和3,5比较).png

  通过整个流程我们可以看出,B-树在查询中的比较次数其实不必二叉查找树少,尤其当单一节点的元素数量很多时,可是相比磁盘I/O的速度,内存中的比较耗时几乎可以忽略.所以只要树的高度足够低,I/O次数足够少,就可以提升查找性能.


B+树

  一个m阶的B+树具有如下几个特征:

  • 1.有k个子树的中间节点包含有k个元素(B树中k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点.

  • 2.所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接.

  • 3.所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素.

  B+树结构例子:


B+树结构.png

  B+树的好处主要体现在查询性能上.

  在单元素查询的时候,B+树会自顶向下逐层查找节点,最终找到匹配的叶子节点.比如我们要查找的是元素3

                          第一次磁盘I/O:

第一次磁盘I/O.png

                          第二次磁盘I/O:

第二次磁盘I/O.png

                          第三次磁盘I/O:


第三次磁盘I/O.png

B+树对比B-树的优势:

  • 1.B+树的中间节点没有卫星数据(卫星数据,指的是索引元素所执行的数据记录,比如数据库中的某一行),所以同样大小的磁盘页可以容纳更多的节点元素
     这意味着,数据量相同的情况下,B+树的结构比B-树更加"矮胖",因此查询时I/O次数也更少.

  • 2.其次,B+树的查询必须最终查找到叶子节点,而B-树只要找到匹配元素即可,无论匹配元素处于中间节点还是叶子节点.
     因此,B-树的查找性能并不文档(最好情况是只查根节点,最坏情况是查到叶子节点).而B+树的每一次查找都是稳定的(查询性能稳定)

    1. B+树范围查询的效率比B-树高(范围查询简便)

B-树的范围查找过程

                    自顶向下,查找到范围的下限(3):

自顶向下,查找到范围的下限(3).png

                      中序遍历到元素6:


中序遍历到元素6.png

                      中序遍历到元素9:


中序遍历到元素9.png

                    中序遍历到元素11,遍历结束:


中序遍历到元素11,遍历结束.png

B+树的范围查找过程

                    自顶向下,查找到范围的下限(3):


image.png

                    通过链表指针,遍历到元素6, 8


通过链表指针,遍历到元素6, 8.png

                  通过链表指针,遍历到元素9, 11,遍历结束:

image.png

相关文章

  • 倒排索引与数据库索引

    数据库索引 mysql索引以B+树作为存储结构,B+树的主要特点是,非叶子节点不存储数据,数据只存储在叶子节点上,...

  • MySQL:索引

    索引的底层实现 InnoDB存储引擎数据结构使用B+树 B+树 B+数据的基本结构如下图 为什么选用B+树 MyS...

  • Mysql - 组合索引的B+树存储结构(最左前缀原理)

    Mysql的B+树索引在单列索引上比较好理解,结构如下: 那组合索引的B+树存储结构是什么样的呢,为什么会有最左前...

  • 【二】B+树

    前言 B+树挺重要的,数据库索引就是用的B+树。 思考 为什么数据库索引不使用hash表或者其他数据结构。 定义 ...

  • MySQL

    索引 InnoDB MySQL5.6版本之后默认引擎是innoDB,以B+树作为索引的数据存储结构。B+数是以B树...

  • B与B+树

    B+树更加适合在区间查询的情况,B+树常用于数据库索引,而B树则常用于文件索引。 B树: 树的总体结构: 特点: ...

  • explain索引

    主键索引:B+树的叶子节点存储,非叶子节点存储主键。辅助索引:B+树的叶子节点存储索引值和主键,非叶子节点存储索引...

  • MySQL最左匹配原则,道儿上兄弟都得知道的原则

    自MySQL5.5版本起,主流的索引结构转为B+树。B+树的节点存储索引顺序是从左向右存储,在检索匹配的时候也要满...

  • 数据库(mysql)知识

    聚簇索引,覆盖索引 常见优化方式 B+树存储的结构 最左原则 存储引擎InnoDb和MyIsam区别 https:...

  • 1分钟了解MyISAM与InnoDB的索引差异

    《数据库索引,到底是什么做的?》介绍了B+树,它是一种非常适合用来做数据库索引的数据结构: (1)很适合磁盘存储,...

网友评论

    本文标题:数据库索引的存储结构:B+树

    本文链接:https://www.haomeiwen.com/subject/nfqssqtx.html