美文网首页
PyTorch入门

PyTorch入门

作者: wendy_要努力努力再努力 | 来源:发表于2017-11-30 18:11 被阅读0次

    一、什么是PyTorch?

    import torch
    x = torch.Tensor(5, 3)  #uninitialized
    x = torch.rand(5, 3)    #randomly initialized 
    y = torch.rand(5, 3)
    # 第一种加法
    result = torch.Tensor(5, 3)
    torch.add(x, y, out=result)
    print(result)
    # 第二种加法
    y.add_(x)                     # 原地改变张量的操作需加“_”后缀
    print(y)
    

    torch Tensor和 numpy array之间的互相转换

    # 如果是赋值,一个的值发生变化,另一个的值也会发生变化
    import torch
    a = torch.ones(5)
    b = a.numpy()
    
    import numpy as np
    a = np.ones(5)
    b = torch.from_numpy(a)
    

    image.png

    二、Autograd自动求导机制

    每个 Variable有两个标签:requires_grad and volatile(不稳定性);允许在梯度计算中排除子图的微调
    在一个操作中如果有一个输入需要梯度,那他的输出也需要梯度。所有变量不需要梯度时,在子图中就不会进行逆向运算。一部分参数冻结,最后一层全连接的参数在用来微调。

    model = torchvision.models.resnet18(pretrained=True)  #创建模型
    for param in model.parameters():
        param.requires_grad = False
    # Replace the last fully-connected layer
    # Parameters of newly constructed modules have requires_grad=True by default
    model.fc = nn.Linear(512, 100)       #全连接层  默认需要梯度
    
    # Optimize only the classifier
    optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)
    

    volatile决定了require_grad is False(不需要梯度)
    要有backward()操作,才能读取变量的梯度


    三、神经网络

    重要的类

    更新权重

    import torch.optim as optim
    
    # create your optimizer
    optimizer = optim.SGD(net.parameters(), lr=0.01)  # 更新方式Nesterov-SGD, Adam, RMSProp
    
    # in your training loop:
    optimizer.zero_grad()   # zero the gradient buffers
    output = net(input)  #net()是定义神经网络的类 class Net()
    criterion = nn.MSELoss()    # loss function
    loss = criterion(output, target) 
    loss.backward()    # backprop
    optimizer.step()    # Does the update   e.g 【weight = weight - learning_rate * gradient】
    

    四、训练分类器

    预处理数据

    load数据时,要从numpy array类型转换成tensor类型的数据;我们可以直接用torchvision的库来导入常用的数据集

    import torch
    import torchvision
    import torchvision.transforms as transforms
    
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])  # PILImage[0,1]将它转换为归一化的【-1,1】的Tensor
    
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                            download=True, transform=transform)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                              shuffle=True, num_workers=2)
    
    testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=True, transform=transform)
    testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                             shuffle=False, num_workers=2)
    
    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
    

    定义网络

    from torch.autograd import Variable
    import torch.nn as nn
    import torch.nn.functional as F
    
    
    class Net(nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = nn.Conv2d(3, 6, 5)
            self.pool = nn.MaxPool2d(2, 2)
            self.conv2 = nn.Conv2d(6, 16, 5)
            self.fc1 = nn.Linear(16 * 5 * 5, 120)
            self.fc2 = nn.Linear(120, 84)
            self.fc3 = nn.Linear(84, 10)
    
        def forward(self, x):
            x = self.pool(F.relu(self.conv1(x)))
            x = self.pool(F.relu(self.conv2(x)))
            x = x.view(-1, 16 * 5 * 5)
            x = F.relu(self.fc1(x))
            x = F.relu(self.fc2(x))
            x = self.fc3(x)
            return x
    
    net = Net()
    

    在GPU上训练

    for epoch in range(2):  # loop over the dataset multiple times  多少epoch由自己决定
    
        running_loss = 0.0
        for i, data in enumerate(trainloader, 0):
            # get the inputs
            inputs, labels = data
    
            # wrap them in Variable
            inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda()) #####代表将数据也搬到GPU上
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward + backward + optimize
            net.cuda()  ####代表将模型搬到GPU上运行
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
    
            # print statistics
            running_loss += loss.data[0]
            if i % 2000 == 1999:    # print every 2000 mini-batches
                print('[%d, %5d] loss: %.3f' %
                      (epoch + 1, i + 1, running_loss / 2000))
                running_loss = 0.0
    
    print('Finished Training')
    

    五、数据并行

    model.gpu()
    mytensor = my_tensor.gpu() #tensor需要指定新的tensor在GPU上运行
    model = nn.DataParallel(model)
    

    随机化初始数据,定义模型,创建模型并并行化,运行整个模型。

    相关文章

      网友评论

          本文标题:PyTorch入门

          本文链接:https://www.haomeiwen.com/subject/ngudbxtx.html