美文网首页
20-Swift内存管理

20-Swift内存管理

作者: 一抹相思泪成雨 | 来源:发表于2020-12-21 16:36 被阅读0次

    1.内存管理

    跟OC一样,Swift也是采取基于引用计数的ARC内存管理方案(针对堆空间)

    • Swift的ARC中有3中引用

      • 强引用( strong reference ) : 默认情况下,引用都是强引用
    • 弱引用( weak reference ) : 通过weak定义弱引用
      1.必须是可选类型的var,因为实例销毁后,ARC会自动将弱引用设置为nil
      2.ARC自动给弱引用设置nil时,不会触发属性观察器

    • 无主引用( unowned reference ) : 通过unowned定义无主引用
      1.不会产生强引用,实例销毁后仍然存储着实例的内存地址(类似于OC中的unsafe_unretained
      2.试图在实例销毁后访问无主引用,会产生运行时错误(野指针)

    2.weak、unowned的使用限制

    • weak、unowned只能用在类实例上面
    protocol Liveable : AnyObject {}
    class Person {}
    
    weak var p0: Person?
    weak var p1: AnyObject?
    weak var p2: Liveable?
    
    unowned var p10: Person?
    unowned var p11: AnyObject?
    unowned var p12: Liveable?
    

    3.Autoreleasepool

     // public func autoreleasepool<Result>(invoking body: () throws -> Result) rethrows -> Result
    public func autoreleasepool<Result>(invoking body: () throws -> Result) rethrows -> Result
    autoreleasepool {
        let p = MJPerson(age: 20, name: "Jack")
         p.run()
    }
    

    4.循环引用(Reference Cycle)

    • weak、unowned 都能解决循环引用的问题,unowned 要比weak 少一些性能消耗
      1.在生命周期中可能会变为 nil 的使用 weak
      2.初始化赋值后再也不会变为 nil 的使用 unowned


      image.png

    5.闭包的循环引用

    • 闭包表达式默认会对用到的外层对象产生额外的强引用(对外层对象进行了retain操作)
    • 下面代码会产生循环引用,导致Person1对象无法释放(看不到Person1的deninit被调用)
    class Person1 {
        var fn: (() -> ())?
        func run(){ print("run") }
        deinit { print("deinit") }
    }
    
    func test() {
        let p = Person1()
        p.fn = { p.run() }
    }
    test()
    
    /// 在闭包表达式的捕获列表声明weak或unowned引用,解决循环引用问题
    /*
    p.fn = {
        [weak p] in
        p?.run()
    }
    
    p.fn = {
        [unowned p] in
        p.run()
    }
    
    p.fn = {
        [weak wp = p, unowned up = p, a = 10 + 20] in
        wp?.run()
    }
     */
    

    6.闭包的循环引用

    • 如果想在定义闭包属性的同时引用self,这个闭包必须是lazy的(因为在实例初始化完毕后才能引用self)
    • 如果lazy属性是闭包调用的结果,那么不用考虑循环引用的问题(因为闭包调用后,闭包的生命周期就结束了)
    class Person2 {
        lazy var fn: (() -> ()) = {
            [weak self] in
            self?.run()
        }
        func run() { print("run") }
        deinit { print("deinit") }
    }
    /// 上边的闭包fn内部如果用到了实例成员(属性、方法)
    /// 编译器会强制要求明确写出self
    class Person3 {
        var age: Int = 0
        lazy var getAge: Int = {
            self.age
        }()
        deinit { print("deinit") }
    }
    

    7.@escaping

    • 非逃逸闭包、逃逸闭包,一般都是当做参数传递给函数
    • 非逃逸闭包:闭包调用发生在函数结束前,闭包调用在函数作用域内
    • 逃逸闭包:闭包有可能在函数结束后调用,闭包调用逃离了函数的作用域,需要通过@escaping声明
    typealias Fn = () -> ()
    // fn 是非逃逸闭包
    func test1(_ fn: Fn) { fn() }
    
    // fn是逃逸闭包
    var gFn: Fn?
    func test2(_ fn: @escaping Fn) { gFn = fn }
    
    // fn是逃逸闭包
    func test3(_ fn: @escaping Fn) {
        DispatchQueue.global().async {
            fn()
        }
    }
    
    class Person4 {
        var fn: Fn
        // fn是逃逸闭包
        init(fn: @escaping Fn) {
            self.fn = fn
        }
        func run() {
            // DispatchQueue.global().async也是一个逃逸闭包
            // 它用到了实例成员(属性、方法),编译器会强制要求明确写出self
            DispatchQueue.global().async {
                self.fn()
            }
        }
    }
    

    8.逃逸闭包的注意点

    • 逃逸闭包不可以捕获inout参数
    func other1(_ fn: Fn) { fn() }
    func other2(_ fn: @escaping Fn) { fn() }
    /*
    func test(value: inout Int) -> Fn {
        other1 { value += 1 }
    //     error: 逃逸闭包不能捕获inout参数
        other2 { value += 1 }
        
        func plus() { value += 1 }
    //     error: 逃逸闭包不能捕获inout参数
        return plus
    }
    */
    

    9.内存访问冲突

    • 内存访问冲突会在两个访问满足下列条件时发生:
    • 至少一个是写入操作
    • 它们访问的是同一块内存
    • 它们的访问时间重叠(比如在同一个函数内)
    // 不存在内存访问冲突
    func plus(_ num: inout Int) -> Int { num + 1 }
    var number = 1
    number = plus(&number)
    
    //存在内存访问冲突
    var step = 1
    func increment(_ num: inout Int) { num += step }
    increment(&step)
    
    //解决内存访问冲突
    var copyOfStep = step
    increment(&copyOfStep)
    step = copyOfStep
    
    func balance(_ x: inout Int, _ y: inout Int) {
        let sum = x + y
        x = sum / 2
        y = sum - x
    }
    
    var num1 = 42
    var num2 = 30
    balance(&num1, &num2) // OK
    //balance(&num1, &num1) // Error
    
    struct Player {
        var name: String
        var health: Int
        var energy: Int
        mutating func shareHealth(with teammate: inout Player) {
            balance(&teammate.health, &health)
        }
    }
    
    var oscar = Player(name: "Oscar", health: 10, energy: 10)
    var maria = Player(name: "Maria", health: 5, energy: 10)
    oscar.shareHealth(with: &maria) // OK
    //oscar.shareHealth(with: &oscar) // Error
    
    var tuple = (health: 10, energy: 20)
    // Error
    //balance(&tuple.health, &tuple.energy)
    
    var holly = Player(name: "Holly", health: 10, energy: 10)
    //Error
    //balance(&holly.health, &holly.energy)
    
    /// 如果下面的条件可以满足,就说明重叠访问结构体的属性是安全的 
    /// 你只访问实例存储属性,不是计算属性或者类属性
    /// 结构体是局部变量而非全局变量
    /// 结构体要么没有被闭包捕获要么只被非逃逸闭包捕获
    
    // Ok
    func test1() {
        var tulpe = (health: 10, energy: 20)
        balance(&tulpe.health, &tulpe.energy)
        
        var holly = Player(name: "Holly", health: 10, energy: 10)
        balance(&holly.health, &holly.energy)
    }
    test1()
    

    10.指针

    • Swift中也有专门的指针类型,这些都被定性为"Unsafe"(不安全的),常见的有以下4种类型
    • UnsafePoint<Pointee>类似于const Pointee*
    • UnsafeMutablePoint<Pointee>类似于Pointee*
    • UnsafeRawPoint类似于const void *
    • UnsafeMutableRawPointer 类似于void*
    var age = 10
    func test2(_ ptr: UnsafeMutablePointer<Int>) {
        ptr.pointee += 10
    }
    func test3(_ ptr: UnsafePointer<Int>) {
        print(ptr.pointee)
    }
    test2(&age)
    test3(&age) // 20
    print(age)  // 20
    
    var age1 = 10
    func test4(_ ptr: UnsafeMutableRawPointer) {
        ptr.storeBytes(of: 20, as: Int.self)
    }
    func test5(_ ptr: UnsafeRawPointer) {
        print(ptr.load(as: Int.self))
    }
    test4(&age1)
    test5(&age1) // 20
    print(age1) // 20
    
    10.1指针的应用示例
    var arr = NSArray(objects: 11, 22, 33, 44)
    arr.enumerateObjects { (obj, idx, stop) in
        print(idx, obj)
        if idx == 2 {
            // 下标为2就停止遍历
            stop.pointee = true
        }
    }
    
    var arr1 = NSArray(objects: 11, 22, 33, 44)
    for (idx, obj) in arr1.enumerated() {
        print(idx, obj)
        if idx == 2 {
            break
        }
    }
    
    10.2获取指向某个变量的指针
    var age2 = 11
    var ptr1 = withUnsafeMutablePointer(to: &age2) { $0 }
    var ptr2 = withUnsafePointer(to: &age2) { $0 }
    ptr1.pointee = 22
    print(ptr2.pointee) // 22
    print(age2) // 22
    
    var ptr3 = withUnsafeMutablePointer(to: &age2) { UnsafeMutableRawPointer($0) }
    var ptr4 = withUnsafePointer(to: &age2) { UnsafeRawPointer($0) }
    ptr3.storeBytes(of: 33, as: Int.self)
    print(ptr4.load(as: Int.self))  // 33
    print(age2) // 33
    
    //获得指向堆空间实例的指针
    class Person5 {}
    var person5 = Person5()
    var ptr5 = withUnsafePointer(to: &person5) { UnsafeRawPointer($0) }
    var heapPtr = UnsafeRawPointer(bitPattern: ptr5.load(as: UInt.self))
    print(heapPtr!)
    
    10.3创建指针
    var testPtr = UnsafeRawPointer(bitPattern: 0x100001234)
    
    //创建
    var testPtr1 = malloc(16)
    //存
    testPtr1?.storeBytes(of: 11, as: Int.self)
    testPtr1?.storeBytes(of: 22, toByteOffset: 8, as: Int.self)
    //取
    print((testPtr1?.load(as: Int.self))!) // 11
    print((testPtr1?.load(fromByteOffset: 8 , as: Int.self))!)  // 22
    //销毁
    free(testPtr1)
    
    var ptr6 = UnsafeMutableRawPointer.allocate(byteCount: 16, alignment: 1)
    ptr6.storeBytes(of: 11, as: Int.self)
    ptr6.advanced(by: 8).storeBytes(of: 22, as: Int.self)
    print(ptr6.load(as: Int.self))   // 11
    print(ptr6.advanced(by: 8).load(as: Int.self))   //22
    ptr6.deallocate()
    
    var ptr7 = UnsafeMutablePointer<Int>.allocate(capacity: 3)
    ptr7.initialize(to: 11)
    ptr7.successor().initialize(to: 22)
    ptr7.successor().successor().initialize(to: 33)
    
    print(ptr7.pointee) // 11
    print((ptr7 + 1).pointee) // 22
    print((ptr7 + 2).pointee) // 33
    
    print(ptr7[0])   //11
    print(ptr7[1])   //22
    print(ptr7[2])   //33
    
    ptr7.deinitialize(count: 3)
    ptr7.deallocate()
    
    class Person6 {
        var age: Int
        var name: String
        init(age: Int, name: String) {
            self.age = age
            self.name = name
        }
        deinit { print(name, "deinit") }
    }
    
    var ptr8 = UnsafeMutablePointer<Person6>.allocate(capacity: 3)
    ptr8.initialize(to: Person6(age: 10, name: "Jack"))
    (ptr8 + 1).initialize(to: Person6(age: 11, name: "Rose"))
    (ptr8 + 2).initialize(to: Person6(age: 12, name: "Kate"))
    // Jack deinit
    // Rose deinit
    // Kate deinit
    ptr8.deinitialize(count: 3)
    ptr8.deallocate()
    

    10.4指针之间的转换

    var ptr9 = UnsafeMutableRawPointer.allocate(byteCount: 16, alignment: 1)
    
    ptr9.assumingMemoryBound(to: Int.self).pointee = 11
    (ptr9 + 8).assumingMemoryBound(to: Double.self).pointee = 22.0
    
    print(unsafeBitCast(ptr9, to: UnsafePointer<Int>.self).pointee) // 11
    print(unsafeBitCast(ptr9 + 8, to: UnsafePointer<Int>.self).pointee) // 22.0
    
    ptr9.deallocate()
    
    /// unsafeBitCase是忽略数据类型的强制转换,不会因为数据类型的变化而改变原来的内存数据
    /// 类似于C++中的reinterpret_cast
    
    class Person7 {}
    var person7 = Person7()
    var ptrr7 = unsafeBitCast(person7, to: UnsafeRawPointer.self)
    print(ptrr7)
    
    

    相关文章

      网友评论

          本文标题:20-Swift内存管理

          本文链接:https://www.haomeiwen.com/subject/nhhqnktx.html