0. 链接
1. 题目
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Insert a character
Delete a character
Replace a character
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
2. 思路1:动态规划
- 首先想到通过调整a使其跟b相同时, 假设只差最后一个字母待确定的话,则a相比b只有三种可能情况:
- 情况1: a比b多一个字母
- 情况2: a比b少一个字母
- 情况3: a和b前面字母都相同,只剩最后一个字母有区别
- 很容易想起动态规划,假设dp[i][j]表示a[0: i + 1]通过调整得到b[0: j + 1]所需要的步数
则有
如果a[i] == b[j] 则
dp[i][j] = dp[i - 1][j - 1]
否则
dp[i][j] = 1 + min(
dp[i - 1][j], # 表示情况1
dp[i][j - 1] # 表示情况2
dp[i - 1][j - 1] # 表示情况3
)
初始条件为:
dp[i][0] = i
dp[0][j] = j
3. 代码
# coding:utf8
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
if word1 is None or word2 is None:
return -1
m, n = len(word1), len(word2)
if m == 0:
return n
if n == 0:
return m
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
dp[i][0] = i
for j in range(n + 1):
dp[0][j] = j
for i in range(1, m + 1):
for j in range(1, n + 1):
if word1[i - 1] == word2[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
delete = dp[i - 1][j]
insert = dp[i][j - 1]
replace = dp[i - 1][j - 1]
dp[i][j] = min(delete, min(insert, replace)) + 1
return dp[m][n]
def test(solution, a, b):
print('a={}, b={} => {}'.format(a, b, solution.minDistance(a, b)))
solution = Solution()
test(solution, 'horse', 'ros')
test(solution, 'intention', 'execution')
test(solution, 'distance', 'springbok')
输出结果
a=horse, b=ros => 3
a=intention, b=execution => 5
a=distance, b=springbok => 9
网友评论