美文网首页
炼数成金笔记(数据分析与展示)

炼数成金笔记(数据分析与展示)

作者: defineaset | 来源:发表于2017-02-27 14:38 被阅读0次

创建向量c()

> x=c(1,2,3,4)
> x
[1] 1 2 3 4

查看向量长度length()

> length(x)
[1] 4

数据类型mode()

> mode(x)
[1] "numeric"

均值mean()
求和sun()
最小值min()
最大值max()
求方差var()
连乘prod()
标准差sd()

> 1:10
 [1]  1  2  3  4  5  6  7  8  9 10
> 1:10-1
 [1] 0 1 2 3 4 5 6 7 8 9
> 2:60*2+1
 [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
[19]  41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75
[37]  77  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111
[55] 113 115 117 119 121
> 
> a=2:60*2+1
> a
 [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
[19]  41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75
[37]  77  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111
[55] 113 115 117 119 121
> a[5]
[1] 13
> a[-5]
 [1]   5   7   9  11  15  17  19  21  23  25  27  29  31  33  35  37  39  41
[19]  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75  77
[37]  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111 113
[55] 115 117 119 121
> a[1:5]
[1]  5  7  9 11 13

“[]”中如果为向量,则表示下标;如果为逻辑性条件,则输出特定条件元素。

> a[a<20]
[1]  5  7  9 11 13 15 17 19

seq()函数

> seq(5,20)
 [1]  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> seq(5,121,by=2)
 [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
[19]  41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75
[37]  77  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111
[55] 113 115 117 119 121
> seq(5,121,length=10)
 [1]   5.00000  17.88889  30.77778  43.66667  56.55556  69.44444  82.33333
 [8]  95.22222 108.11111 121.00000

letters字母向量
which()

> a=rep(2:5,3)
> a
 [1] 2 3 4 5 2 3 4 5 2 3 4 5
> which.max(a)
[1] 4
> which.min(a)
[1] 1
> a[which.min(a)]
[1] 2
> which(a==2)
[1] 1 5 9
> which(a>3)
[1]  3  4  7  8 11 12

rev()

> a=1:20
> a
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
> rev(a)
 [1] 20 19 18 17 16 15 14 13 12 11 10  9  8  7  6  5  4  3  2  1

sort()

> a=c(1,8,3,0,4,0,4,8,5,0,7)
> a
 [1] 1 8 3 0 4 0 4 8 5 0 7
> sort(a)
 [1] 0 0 0 1 3 4 4 5 7 8 8
> rev(a)
 [1] 7 0 5 8 4 0 4 0 3 8 1
> rev(sort(a))
 [1] 8 8 7 5 4 4 3 1 0 0 0

matrix()

> a=c(1:12)
> matrix(a,nrow=3,ncol=4)
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
> matrix(a,nrow=4,ncol=3)
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12
> matrix(a,nrow=4,ncol=3,byrow=T)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
> matrix(a,nrow=4,ncol=3,byrow=F)
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12

矩阵运算t(),矩阵加减

> t(a)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
[1,]    1    2    3    4    5    6    7    8    9    10    11    12
> t(matrix(a,nrow=4,ncol=3,byrow=F))
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12

diag()

> a=matrix(1:16,nrow=4,ncol=4)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16
> diag(a)
[1]  1  6 11 16
> diag(diag(a))
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    6    0    0
[3,]    0    0   11    0
[4,]    0    0    0   16
> diag(4)
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1
> 

正态分布随机数rnorm(),逆矩阵solve()

> a=matrix(rnorm(16),4,4)
> a
            [,1]       [,2]       [,3]       [,4]
[1,] -1.54259118  1.3176449  0.9563522 -0.5035544
[2,]  0.05807243  1.1320155  0.1725380 -1.0957068
[3,]  0.35827596 -1.0891014 -0.2410851 -0.0136876
[4,]  0.58530585 -0.4879238 -2.4095987  0.5460303
> solve(a)
           [,1]       [,2]       [,3]        [,4]
[1,] -0.8933315  0.2854584 -0.6641716 -0.26766499
[2,] -0.2357497  0.1335195 -1.0751868  0.02356783
[3,] -0.2438823 -0.1346265 -0.2108326 -0.50034762
[4,] -0.3293118 -0.7807789 -1.1792158 -0.06862583
> 

正态分布函数rnorm( )
泊松分布函数rpois( )
指数分布函数rexp( )
Gamma分布函数rgamma( )
均匀分布函数runif( )
二项分布函数rbinom( )
几何分布函数rgeom( )
solve()也可以解方程

> b=c(1:4)
> solve(a,b)
[1] -3.385590 -3.100000 -3.147023 -5.703020

eigen()特征值与特征向量

> a=diag(4)+1
> a
     [,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2
> a.e=eigen(a,symmetric=T)
> a.e
$values
[1] 5 1 1 1

$vectors
     [,1]          [,2]       [,3]       [,4]
[1,] -0.5  0.000000e+00  0.0000000  0.8660254
[2,] -0.5 -6.408849e-17  0.8164966 -0.2886751
[3,] -0.5 -7.071068e-01 -0.4082483 -0.2886751
[4,] -0.5  7.071068e-01 -0.4082483 -0.2886751

array数组,矩阵是数组的二维情况

> x=c(1:6)
> is.vector(x)
[1] TRUE
> is.array(x)
[1] FALSE
> dim(x)<-c(2,3)
> x
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
> is.array(x)
[1] TRUE
> is.matrix(x)
[1] TRUE

数据框,矩阵形式,但列可以不同数据data.frame()

> x1=c(10,13,45,26,23,12)
> x2=c(12,45,25,64,23,11)
> x=data.frame(x1,x2)
> x
  x1 x2
1 10 12
2 13 45
3 45 25
4 26 64
5 23 23
6 12 11
> > x=data.frame('重量'=x1,'运费'=x2)
> x
  重量 运费
1   10   12
2   13   45
3   45   25
4   26   64
5   23   23
6   12   11

plot() 绘图函数,后面详细阐述
读取文本数据

  • 设置工作目录
  • 文件放入工作目录
    不在工作目录需用路径
  • read.table()
    读excle文件
  • 文件另存为prn或csv可直接读取 read.prn read.csv
  • 安装RODBC——library(RODBC)
    循环语句for()
 for(i in 1:59)(a[i]=i*2+3)
> a
 [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
[19]  41  43  45  47  49  51  53  55  57  59  61  63  65  67  69  71  73  75
[37]  77  79  81  83  85  87  89  91  93  95  97  99 101 103 105 107 109 111
[55] 113 115 117 119 121
> 

while()

a=1:120
a[1]=5
> i=1
> while(a[i]<60){i=i+1;a[i]=a[i-1]+2}
> a
  [1]   5   7   9  11  13  15  17  19  21  23  25  27  29  31  33  35  37  39
 [19]  41  43  45  47  49  51  53  55  57  59  61  30  31  32  33  34  35  36
 [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
 [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
 [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
 [91]  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108
[109] 109 110 111 112 113 114 115 116 117 118 119 120

R脚本

source("D:\\h.r")

print()函数
apply()函数

apply(X, MARGIN, FUN, ...)

相关文章

网友评论

      本文标题:炼数成金笔记(数据分析与展示)

      本文链接:https://www.haomeiwen.com/subject/nihzwttx.html