为什么需要ES
回忆时光
许多年前,一个刚结婚的名叫 Shay Banon 的失业开发者,跟着他的妻子去了伦敦,他的妻子在那里学习厨师。 在寻找一个赚钱的工作的时候,为了给他的妻子做一个食谱搜索引擎,他开始使用 Lucene 的一个早期版本。
直接使用 Lucene 是很难的,因此 Shay 开始做一个抽象层,Java 开发者使用它可以很简单的给他们的程序添加搜索功能。 他发布了他的第一个开源项目 Compass。
后来 Shay 获得了一份工作,主要是高性能,分布式环境下的内存数据网格。这个对于高性能,实时,分布式搜索引擎的需求尤为突出, 他决定重写 Compass,把它变为一个独立的服务并取名 Elasticsearch。
第一个公开版本在2010年2月发布,从此以后,Elasticsearch 已经成为了 Github 上最活跃的项目之一,他拥有超过300名 contributors(目前736名 contributors )。 一家公司已经开始围绕 Elasticsearch 提供商业服务,并开发新的特性,但是,Elasticsearch 将永远开源并对所有人可>用。据说,Shay 的妻子还在等着她的食谱搜索引擎…
学习了基础的搜索引擎原理 我进而想到大量的数据都是存放在哪里的呢? 为了快速查询数据结构必然发生变化,是不是需要有特殊存储方式呢? 尝试思考如下几种方式来实现.
Sql
对于关系型数据,我们通常采用以下或类似架构去解决查询瓶颈和写入瓶颈(拆表):
1.通过主从备份解决数据安全性问题;
2.通过数据库代理中间件心跳监测,解决单点故障问题;
3.通过代理中间件将查询语句分发到各个slave节点进行查询,并汇总结果
NoSql
对于Nosql数据库,以mongodb为例,其它原理类似:
1.通过副本备份保证数据安全性;
2.通过节点竞选机制解决单点问题;
3.先从配置库检索分片信息,然后将请求分发到各个节点,最后由路由节点合并汇总结果
内存
但把大量数据存在内存中并不靠谱,原因是内存成本太高了.尤其是对于搜索引擎来说需要存大量的数据.内存存储的解决方案,例如redis还是主要用来做高数缓存的,以此来做数据库就不合适了.
为解决以上问题,从源头着手分析,通常会从以下方式来寻找方法:
1.存储数据时按有序存储;
2.将数据和索引分离;
3.压缩数据;而这就引出了Elasticsearch。
ES基础
ES是elaticsearch简写, Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。
Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,但是它的目的是通过简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
Lucene & elaticsearch
简化Lucene 使用
对于Lucene可以看: Lucene 入门
这里提到了Lucene 是什么呢? 它就是我们想找的那个特殊的存储结构,但是想要使用它,你必须使用Java来作为开发语言并将其直接集成到你的应用中,更糟糕的是,Lucene非常复杂,你需要深入了解检索的相关知识来理解它是如何工作的。
而ES类似于netty框架帮我们封装了复杂的Nio实现 他使用Java开发并使用Lucene作为其核心来实现所有索引和搜索的功能,他提供了简单的RESTful API来隐藏Lucene的复杂性,从而让全文搜索变得简单。
ES做了什么
1.检索相关数据;
2.返回统计结果;
3.速度要快。
优点:
- 分布式实时文件存储,可将每一个字段存入索引,使其可以被检索到。
- 实时分析的分布式搜索引擎。
分布式:索引分拆成多个分片,每个分片可有零个或多个副本。集群中的每个数据节点都可承载一个或多个分片,并且协调和处理各种操作;
负载再平衡和路由在大多数情况下自动完成。- 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。也可以运行在单台PC上(已测试)
- 支持插件机制,分词插件、同步插件、Hadoop插件、可视化插件等。
原理
首先和我们熟悉的mysql对比一下:
对比- 关系型数据库中的数据库(DataBase),等价于ES中的索引(Index)
- 一个数据库下面有N张表(Table),等价于1个索引Index下面有N多类型(Type)
- 一个数据库表(Table)下的数据由多行(ROW)多列(column,属性)组成,等价于1个Type由多个文档(Document)和多Field组成。
- 在一个关系型数据库里面,schema定义了表、每个表的字段,还有表和字段之间的关系。 与之对应的,在ES中:Mapping定义索引下的Type的字段处理规则,即索引如何建立、索引类型、是否保存原始索引JSON文档、是否压缩原始JSON文档、是否需要分词处理、如何进行分词处理等。
- 在数据库中的增insert、删delete、改update、查search操作等价于ES中的增PUT/POST、删Delete、改_update、查GET.
进一步理解
Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档,用JSON作为文档序列化的格式
{
"name" : "John",
"sex" : "Male",
"age" : 25,
"birthDate": "1990/05/01",
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
而如果是mysql呢?
用MySQL这样的数据库存储就会容易想到建立一张User表,有balabala的字段等,在Elasticsearch里这就是一个文档,当然这个文档会属于一个User的类型,各种各样的类型存在于一个索引当中。这里有一份简易的将Elasticsearch和关系型数据术语对照表:
关系数据库 ⇒ 数据库 ⇒ 表 ⇒ 行 ⇒ 列(Columns)
Elasticsearch ⇒ 索引 ⇒ 类型 ⇒ 文档 ⇒ 字段(Fields)
一个 Elasticsearch 集群可以包含多个索引(数据库),也就是说其中包含了很多类型(表)。这些类型中包含了很多的文档(行),然后每个文档中又包含了很多的字段(列)。
Elasticsearch的交互,可以使用Java API,也可以直接使用HTTP的Restful API方式,比如我们打算插入一条记录,可以简单发送一个HTTP的请求:
PUT /megacorp/employee/1
{
"name" : "John",
"sex" : "Male",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
其有一下几个核心点:
Cluster:集群。
ES可以作为一个独立的单个搜索服务器。不过,为了处理大型数据集,实现容错和高可用性,ES可以运行在许多互相合作的服务器上。这些服务器的集合称为集群。
Node:节点。
形成集群的每个服务器称为节点。
Shard:分片。
当有大量的文档时,由于内存的限制、磁盘处理能力不足、无法足够快的响应客户端的请求等,一个节点可能不够。这种情况下,数据可以分为较小的分片。每个分片放到不同的服务器上。
当你查询的索引分布在多个分片上时,ES会把查询发送给每个相关的分片,并将结果组合在一起,而应用程序并不知道分片的存在。即:这个过程对用户来说是透明的。
Replia:副本。
为提高查询吞吐量或实现高可用性,可以使用分片副本。
副本是一个分片的精确复制,每个分片可以有零个或多个副本。ES中可以有许多相同的分片,其中之一被选择更改索引操作,这种特殊的分片称为主分片。
当主分片丢失时,如:该分片所在的数据不可用时,集群将副本提升为新的主分片。
全文检索。
全文检索就是对一篇文章进行索引,可以根据关键字搜索,类似于mysql里的like语句。
全文索引就是把内容根据词的意义进行分词,然后分别创建索引,例如”你们的激情是因为什么事情来的” 可能会被分词成:“你们“,”激情“,“什么事情“,”来“ 等token,这样当你搜索“你们” 或者 “激情” 都会把这句搜出来。
数据结构
主要就是其索引的建立思路
将磁盘里的东西尽量搬进内存,减少磁盘随机读取次数(同时也利用磁盘顺序读特性),结合各种奇技淫巧的压缩算法,用及其苛刻的态度使用内存。
并且其一切设计都是为了提高搜索的性能 其余的部分肯定会有牺牲,比如插入/更新
倒排索引
这就要引出其核心数据结构倒排索引了 对于其的简单理解可以先看一下之前的博客#搜索引擎入门 这里结合ES详细介绍一下:
继续上面的例子,假设有这么几条数据(为了简单,去掉about, interests这两个field):
ID | Name | Age | Sex |
---|---|---|---|
1 | Kate | 24 | Female |
2 | John | 24 | Male |
3 | Bill | 29 | Male |
ID是Elasticsearch自建的文档id,那么Elasticsearch建立的索引如下:
Name:
Term | Posting List |
---|---|
Kate | 1 |
John | 2 |
Bill | 3 |
Age:
Term | Posting List |
---|---|
24 | [1,2] |
29 | 3 |
Sex:
Term | Posting List |
---|---|
Female | 1 |
Male | [2,3] |
Posting List
Elasticsearch分别为每个field都建立了一个倒排索引,Kate, John, 24, Female这些叫term,而[1,2]就是Posting List。Posting list就是一个int的数组,存储了所有符合某个term的文档id。
接下来才是关键:
通过posting list这种索引方式似乎可以很快进行查找,比如要找age=24的同学,爱回答问题的小明马上就举手回答:我知道,id是1,2的同学。但是,如果这里有上千万的记录呢?如果是想通过name来查找呢?
Term Dictionary
Elasticsearch为了能快速找到某个term,将所有的term排个序,二分法查找term,logN的查找效率,就像通过字典查找一样,这就是Term Dictionary。现在再看起来,似乎和传统数据库通过B-Tree的方式类似啊,为什么说比B-Tree的查询快呢?
Term Index
B-Tree通过减少磁盘寻道次数来提高查询性能,Elasticsearch也是采用同样的思路,直接通过内存查找term,不读磁盘,但是如果term太多,term dictionary也会很大,放内存不现实,于是有了Term Index,就像字典里的索引页一样,A开头的有哪些term,分别在哪页,可以理解term index是一颗树:
这棵树不会包含所有的term,它包含的是term的一些前缀。通过term index可以快速地定位到term dictionary的某个offset,然后从这个位置再往后顺序查找。
所以term index不需要存下所有的term,而仅仅是他们的一些前缀与Term Dictionary的block之间的映射关系,再结合FST(Finite State Transducers)的压缩技术,可以使term index缓存到内存中。从term index查到对应的term dictionary的block位置之后,再去磁盘上找term,大大减少了磁盘随机读的次数。
而FST是什么呢?
FSTs are finite-state machines that map a term (byte sequence) to an arbitrary output.
假设我们现在要将mop, moth, pop, star, stop and top(term index里的term前缀)映射到序号:0,1,2,3,4,5(term dictionary的block位置)。最简单的做法就是定义个Map<String, Integer>,大家找到自己的位置对应入座就好了,但从内存占用少的角度想想,有没有更优的办法呢?答案就是:FST
O表示一种状态
->表示状态的变化过程,上面的字母/数字表示状态变化和权重
将单词分成单个字母通过O和–>表示出来,0权重不显示。如果O后面出现分支,就标记权重,最后整条路径上的权重加起来就是这个单词对应的序号。
FST以字节的方式存储所有的term,这种压缩方式可以有效的缩减存储空间,使得term index足以放进内存,但这种方式也会导致查找时需要更多的CPU资源。
压缩
我们学习mysql的时候肯定知道 如果某个数据列包含许多重复的内容,为它建立索引就没有太大的实际效果。
但对于搜索来说总不能不让用户搜索这种字段吧,例如男/女这样的. ES对于这种索引就会进行压缩.
压缩方法
ES为了压缩索引真的是不择手段。在压缩过程中使用如下技巧,它会按依次检测以下压缩模式:
- 如果所有的数值各不相同(或缺失),设置一个标记并记录这些值
- 如果这些值小于 256,将使用一个简单的编码表
- 如果这些值大于 256,检测是否存在一个最大公约数
- 如果没有存在最大公约数,从最小的数值开始,统一计算偏移量(增量)进行编码
Frame Of Reference
增量编码压缩,将大数变小数,按字节存储
首先,Elasticsearch要求posting list是有序的(为了提高搜索的性能,再任性的要求也得满足),这样做的一个好处是方便压缩,看下面这个图例:
如果数学不是体育老师教的话,还是比较容易看出来这种压缩技巧的。
原理就是通过增量,将原来的大数变成小数仅存储增量值,再精打细算按bit排好队,最后通过字节存储,而不是大大咧咧的尽管是2也是用int(4个字节)来存储。
Roaring bitmaps
说到Roaring bitmaps,就必须先从bitmap说起。Bitmap是一种数据结构,假设有某个posting list:
[1,3,4,7,10]
对应的bitmap就是:
[1,0,1,1,0,0,1,0,0,1]
非常直观,用0/1表示某个值是否存在,比如10这个值就对应第10位,对应的bit值是1,这样用一个字节就可以代表8个文档id,旧版本(5.0之前)的Lucene就是用这样的方式来压缩的,但这样的压缩方式仍然不够高效,如果有1亿个文档,那么需要12.5MB的存储空间,这仅仅是对应一个索引字段(我们往往会有很多个索引字段)。于是有人想出了Roaring bitmaps这样更高效的数据结构。
Bitmap的缺点是存储空间随着文档个数线性增长,Roaring bitmaps需要打破这个魔咒就一定要用到某些指数特性:
将posting list按照65535为界限分块,比如第一块所包含的文档id范围在0~65535之间,第二块的id范围是65536~131071,以此类推。再用<商,余数>的组合表示每一组id,这样每组里的id范围都在0~65535内了,剩下的就好办了,既然每组id不会变得无限大,那么我们就可以通过最有效的方式对这里的id存储。
为什么是以65535为界限?
程序员的世界里除了1024外,65535也是一个经典值,因为它=2^16-1,正好是用2个字节能表示的最大数,一个short的存储单位,注意到上图里的最后一行“If a block has more than 4096 values, encode as a bit set, and otherwise as a simple array using 2 bytes per value”,如果是大块,用节省点用bitset存,小块就豪爽点,2个字节我也不计较了,用一个short[]存着方便。
那为什么用4096来区分采用数组还是bitmap的阀值呢?
这个是从内存大小考虑的,当block块里元素超过4096后,用bitmap更剩空间: 采用bitmap需要的空间是恒定的: 65536/8 = 8192bytes 而如果采用short[],所需的空间是: 2*N(N为数组元素个数) N=4096刚好是边界:
你也许会想 "好吧,貌似对数字很好,不知道字符串怎么样?" 通过借助顺序表(ordinal table),String 类型也是类似进行编码的。String 类型是去重之后存放到顺序表的,通过分配一个
ID
,然后通过数字类型的ID
构建Doc Values
。这样String类型和数值类型可以达到同样的压缩效果。而顺序表本身也有很多压缩技巧,比如固定长度、变长或是前缀字符编码等等。
联合索引
上面说了半天都是单field索引,如果多个field索引的联合查询,倒排索引如何满足快速查询的要求呢?
- 利用跳表(Skip list)的数据结构快速做“与”运算,或者
- 利用上面提到的bitset按位“与”
先看看跳表的数据结构:
将一个有序链表level0,挑出其中几个元素到level1及level2,每个level越往上,选出来的指针元素越少,查找时依次从高level往低查找,比如55,先找到level2的31,再找到level1的47,最后找到55,一共3次查找,查找效率和2叉树的效率相当,但也是用了一定的空间冗余来换取的。
假设有下面三个posting list需要联合索引:
如果使用跳表,对最短的posting list中的每个id,逐个在另外两个posting list中查找看是否存在,最后得到交集的结果。
如果使用bitset,就很直观了,直接按位与,得到的结果就是最后的交集。
最后
注意点
- 不需要索引的字段,一定要明确定义出来,因为默认是自动建索引的
- 同样的道理,对于String类型的字段,不需要analysis的也需要明确定义出来,因为默认也是会analysis的
- 选择有规律的ID很重要,随机性太大的ID(比如java的UUID)不利于查询
详细使用
Elasticsearch权威指南1
Elasticsearch权威指南2
ES对外接口
JAVA API接口
常见的增、删、改、查操作实现:
RESTful API接口
论坛
1)国外:https://discuss.elastic.co/
2)国内:http://elasticsearch.cn/
网友评论