美文网首页
🤔 Aba | 全自动biomarker分析神包!~(原作者用这

🤔 Aba | 全自动biomarker分析神包!~(原作者用这

作者: 生信漫卷 | 来源:发表于2022-12-13 14:00 被阅读0次

    写在前面

    今天介绍一个Github上的神包吧, 主要是用于Biomarker的临床分析, 原作者用这个包已经发了3篇Nature了, 一起看看吧:👇

    < , , >

    在一些针对Biomarker的临床研究中, 我们常常需对Biomarker进行模型拟合, 预测效果评估等等.🥰
    这个包可以完美解决这些问题, 并且直接输出发表级图表, 简单介绍一下用法给大家吧.🥳

    用到的包

    rm(list = ls())
    #devtools::install_github("ncullen93/abaR")
    library(aba)
    library(tidyverse)
    library(ggsci)
    

    示例数据

    dat <- adnimerge %>% 
      dplyr::filter(VISCODE == 'bl')
    
    DT::datatable(dat)
    

    变量一览

    看一下都有什么变量, 都是什么类型. 🤞

    str(dat)
    

    建立模型

    5.1 原函数

    大家可以通过这种方式来建立模型.

      aba_model(
       data = NULL,
       groups = NULL,
       outcomes = NULL,
       predictors = NULL,
       covariates = NULL,
       stats = NULL,
       evals = NULL,
       include_basic = TRUE
     )
    

    5.2 pipeline形式

    这里也提供了pipeline的形式来编写代码, 个人也是更倾向于这种方式, 大家试一下吧. 😏

    我们在这里设定两个结局指标: ConvertedToAlzheimersCSF_ABETA_STATUS_bl.🤒
    两个预测指标, 即Biomarker, PLASMA_PTAU181_blPLASMA_NFL_bl. 🤫

    模型为logistic regression. 📈

    model <- aba_model() %>% 
      set_data(dat) %>% 
      set_groups(DX_bl %in% c('MCI','AD')) %>% 
      set_outcomes(ConvertedToAlzheimers, CSF_ABETA_STATUS_bl) %>% 
      set_predictors(
        PLASMA_PTAU181_bl,
        PLASMA_NFL_bl,
        c(PLASMA_PTAU181_bl, PLASMA_NFL_bl)
      ) %>% 
      set_covariates(AGE, GENDER, EDUCATION) %>% 
      set_stats(stat_glm(std.beta=T))
    
    model
    

    Note! 这里我们注意下如何进行Biomarker联合应用, 可写为 c(PLASMA_PTAU181_bl, PLASMA_NFL_bl). 😘


    5.3 拟合

    model <- model %>% 
      fit()
    model
    

    5.4 模型数据

    拟合完以后我们就获得了模型的结果, 大家可以大致看一下.🤓

    model_summary <- model %>% 
      summary()
    
    model_summary
    

    模型结果的可视化

    这个包提供了很多可视化的参数, 可以直接将summary的结果传递给画图函数, 非常简单. 😘

    6.1 coeffficients可视化

    这里需要说明一下, 函数内自带的配色只有4种, 即jama, nature, lancet, none.
    但是大家可以按照ggplot语法更改颜色.🤜

    model_summary %>% 
      aba_plot_coef(coord_flip=T,
                    palette = 'nature') 
    

    6.2 AUC可视化

    看看各个模型的AUC吧.😗

    model_summary %>% 
      aba_plot_metric(palette = 'nature')
    

    6.3 ROC可视化

    model_summary %>% 
      aba_plot_roc()
    

    6.4 Risk density plot

    批量出图, 大家想看哪个predictorRisk density plot就提取哪个吧. 🤪

    fig <- model %>%
      aba_plot_risk_density()
    fig
    

    随便提取一个看看吧~~~😉

    fig$fig[1]
    

    补充一下

    这个包还有很多其他强大的功能, 大家可以去进一步地探索一下。😘

    欢迎大家留言说一下其他强大的函数哦~


    这里附上所有函数官方解释:👇

    • aba_adjust()

      Create an aba_adjust object.

    • aba_control()

      Create an aba control object.

    • aba_demographics()

      Create a demographics table from a fitted aba model.

    • aba_diagnosticpower()

      Caclulate diagnostic power based on a fitted aba model

    • aba_emmeans()

      Calculated estimated marginal means.

    • aba_evaluate()

      Evaluate a fitted aba model on new data

    • aba_fit()

      Fit an aba model.

    • aba_longpower()

      Run power analysis on a longitudinal-based aba model.

    • aba_model()

      Create an aba model.

    • aba_plot()

      Plot an aba object

    • aba_plot_coef()

      Plot coefficients of an aba model summary

    • aba_plot_metric()

      Plot metrics of an aba model summary

    • aba_plot_predictor_risk()

      Plot predictor values versus predicted risk from fitted aba model

    • aba_plot_risk_density()

      Plot risk density split by binary outcome class

    • aba_plot_roc()

      Plot ROC curves from an aba model

    • aba_predict()

      Get individual predictions from a fitted aba model

    • aba_read()

      Read an aba object from file

    • aba_robust()

      Evaluate the robustness of an aba model to systematic and random error.

    • aba_screen()

      Create an aba screen object.

    • aba_selection()

      Run model selection on an aba model.

    • aba_summary()

      Summarise a fitted aba model.

    • aba_write()

      Write an aba object to file.

    • adnimerge

      A sample of ADNI data in long format

    • all_combos()

      Create all possible combinations of a set of variables

    • all_levels()

      Create groups from all levels of one or more variables

    • as_reactable()

      Convert an aba summary to a interactive react table

    • as_reactable(*<abaSummary>*)

      Convert an aba summary to a interactive react table

    • as_table()

      Convert an aba summary to a nicely formatted table

    • as_table(*<abaSummary>*)

      Convert an aba summary to a nicely formatted table

    • eval_boot()

      Create a bootstrap evaluator

    • eval_cv()

      Create a cross validation evaluator

    • eval_standard()

      Create a standard evaluator

    • eval_traintest()

      Create a train-test evaluator

    • everyone()

      Use all data rows as a group in an aba model.

    • fit(*<abaModel>*)

      Fit an aba model.

    • predict(*<abaModel>*)

      Get individual predictions from a fitted aba model

    • set_covariates()

      Set the covariates of an aba model.

    • set_data()

      Set the data of an aba model

    • set_evals()

      Set the evals of an aba model

    • set_groups()

      Set the groups of an aba model.

    • set_outcomes()

      Set the outcomes of an aba model.

    • set_predictors()

      Set the predictors of an aba model.

    • set_stats()

      Set the stats of an aba model

    • stat_ancova()

      Create an ancova stat object.

    • stat_cox()

      Create a glm stat object.

    • stat_glm()

      Create a glm stat object.

    • stat_lm()

      Create an lm stat object.

    • stat_lme()

      Create an lme stat object.

    • stat_lmer()

      Create an lmer stat object.

    • stat_mmrm()

      Create an mmrm stat object.

    • stat_retest()

      Create a retest stat object.

    • stat_roc()

      Create a roc stat object.

    • theme_aba()

      Custom aba ggplot2 theme


    <img src="https://img.haomeiwen.com/i24475539/a8d99c85dde3e123.png" alt="果冻" style="zoom:25%;" />

    <center>最后祝大家早日不卷!~</center>


    点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

    <center> <b>📍 往期精彩 <b> </center>

    📍 <font size=1>🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!</font>
    📍 <font size=1>🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?</font>
    📍 <font size=1>🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)</font>
    📍 <font size=1>🤩 scRNA-seq | 吐血整理的单细胞入门教程</font>
    📍 <font size=1>🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~</font>
    📍 <font size=1>🤩 RColorBrewer | 再多的配色也能轻松搞定!~</font>
    📍 <font size=1>🧐 rms | 批量完成你的线性回归</font>
    📍 <font size=1>🤩 CMplot | 完美复刻Nature上的曼哈顿图</font>
    📍 <font size=1>🤠 Network | 高颜值动态网络可视化工具</font>
    📍 <font size=1>🤗 boxjitter | 完美复刻Nature上的高颜值统计图</font>
    📍 <font size=1>🤫 linkET | 完美解决ggcor安装失败方案(附教程)</font>
    📍 <font size=1>......</font>

    本文由mdnice多平台发布

    相关文章

      网友评论

          本文标题:🤔 Aba | 全自动biomarker分析神包!~(原作者用这

          本文链接:https://www.haomeiwen.com/subject/npuhqdtx.html