##安装DiffBind包
BiocManager::install("DiffBind")
library(DiffBind)
##准备samplelist.txt
##读入samplelist.txt
samples <- read.csv(file = "samplelist.txt", sep="\t")
##将其转化为后续分析用dba对象
obj <- dba(sampleSheet=samples)
view(obj)
##计数peaks上的reads
DBA_object <- dba.count(obj, bUseSummarizeOverlaps=TRUE)
view(DBA_object)
##PCA画图
pdf("PCA.pdf")
dba.plotPCA(DBA_object, attributes=DBA_CONDITION, label=DBA_ID)
dev.off()
##peaks热图
pdf("heatmap1.pdf")
plot(DBA_object)
dev.off()
##构建design和contrast模型
contrast <- dba.contrast(DBA_object, categories=DBA_CONDITION, minMembers =2)
view(contrast)
##差异分析
contrastResult <- dba.analyze(contrast, method=DBA_DESEQ2)
view(contrastResult)
dba.show(contrastResult, bContrast=T)
##简单可视化
pdf("CorandMA.pdf")
#plot(contrastResult, contrast=1) ####contrast=1指定dba.show(contrastResult, bContrast=T)的差异组合针对,特异差异组合进行相关性可视化
plot(contrastResult)
dba.plotMA(contrastResult)
dev.off()
##提取差异分析结果
Report <- dba.report(contrastResult, contrast=1)
view(Report)
result <- as.data.frame(Report)
write.table(result, file = "DX8HvsTGYDM.txt", sep="\t", quote=F, col.names = NA)
##统计一下上调、下调Peaks数量
sum(Report$Fold > 1)
sum(Report$Fold < -1)
##针对指定差异组合进行热图展示
pdf("heatmaptest.pdf")
hmap <- colorRampPalette(c("red","black","green"))(n = 13)
#dba.plotHeatmap(contrastResult, contrast=1, correlation=FALSE,scale="row",colScheme = hmap)####contrast=1指定dba.show(contrastResult, bContrast=T)的差异组合针对,特异差异组合进行
dba.plotHeatmap(contrastResult,correlation=FALSE,scale="row",colScheme = hmap)
dev.off()
引用:
https://www.jianshu.com/p/b74c8077d893
网友评论