美文网首页
20190711工作进展

20190711工作进展

作者: Songger | 来源:发表于2019-07-11 15:11 被阅读0次
  1. 得到了title表和叶子类目的对应关系
    hs_leaf_class_for_title
    确认有些title表中的项目在原始数据表中找不到对应项目,大概每个表有1000条找不到

  2. 取得商品的item_id
    select coalesce(get_json_object(body, '.entities.k0.item_id/l'), get_json_object(body, '.entities.k1.item_id/l')) as item_id, title, id from hs_jingyan_query_related_video_pool_2_3 limit 100;

  3. 按照item_id取得叶子类目

create table hs_leaf_class_for_title_3 as select item_id, title, cate_id, cate_name, cate_level, commodity_id, commodity_name from tbcdm.dim_tb_itm where ds=max_pt('tbcdm.dim_tb_itm') and item_id in(select coalesce(get_json_object(body, '.entities.k0.item_id/l'), get_json_object(body, '.entities.k1.item_id/l')) from hs_jingyan_query_related_video_pool_3_3);

select count(*) from as select coalesce(get_json_object(body, '.entities.k0.item_id/l'), get_json_object(body, '.entities.k1.item_id/l')) from hs_jingyan_query_related_video_pool_3_3;

create table hs_tmp_1 as select coalesce(get_json_object(body, '.entities.k0.item_id/l'), get_json_object(body, '.entities.k1.item_id/l')) as item_id, id from hs_jingyan_query_related_video_pool_3_3;

  1. 得到query对应的商品id列表

create table hs_tmp_0 as select se_keyword, item_list from graph_embedding.jl_jingyan_query_related_top_query_detailed;

create table hs_tmp_1 as select b.id, b.query, a.item_list from (select se_keyword, item_list from hs_tmp_0)a left join (select id, query from hs_jingyan_query_related_top_query_1)b on a.se_keyword == b.query;

create table hs_tmp_4 as select a.id, b.query, a.item_id from
(select id, item_id from hs_tmp_3)a left join (select query, id from hs_jingyan_query_related_top_query_1)b on a.id == b.id;

create table hs_leaf_class_for_query as select item_id, title, cate_id, cate_name, cate_level, commodity_id, commodity_name from tbcdm.dim_tb_itm where ds=max_pt('tbcdm.dim_tb_itm') and item_id in(select coalesce(get_json_object(body, '.entities.k0.item_id/l'), get_json_object(body, '.entities.k1.item_id/l')) from hs_jingyan_query_related_video_pool_3_3);

select se_keywork, item_list from graph_embedding.jl_jingyan_query_related_top_query_detailed where se_keyword is NULL limit 100;

  1. 得到的query中能与原始query对应上的只有9150条数据,也就是说有850个query没有对应的叶子类目
    hs_leaf_class_for_query_0

create table hs_tmp_7 as select b.id, b.query, b.item_id, a.title, a.cate_id, a.cate_name, a.cate_level, a.commodity_id, a.commodity_name from (select item_id, title, cate_id, cate_name, cate_level, commodity_id, commodity_name from hs_tmp_6 where item_id in(select item_id from hs_tmp_5))a left join (select id, query, item_id from hs_tmp_5)b on a.item_id == b.item_id;

  1. 过滤

hs_result_title_query_1w_2, hs_leaf_class_for_query_0 -> hs_result_title_query_1w_filtered

pai -name pytorch -project algo_public_dev -Dpython=3.6 -Dscript="file:///apsarapangu/disk1/hengsong.lhs/origin_deep_cluster_odps_5.tar.gz" -DentryFile="test_query_with_title.py" -Dtables="odps://graph_embedding/tables/hs_result_title_query_1w_2,odps://graph_embedding/tables/hs_leaf_class_for_query_0" -Doutputs="odps://graph_embedding/tables/hs_result_title_query_1w_filtered_tmp" -Dbucket="oss://bucket-automl/" -Darn="acs:ram::1293303983251548:role/graph2018" -Dhost="cn-hangzhou.oss-internal.aliyun-inc.com" -DuserDefinedParameters="" -DworkerCount=1;

create table hs_result_title_query_1w_filtered_1 as
select a.* from
(select * from hs_result_title_query_1w_2)a right join
(select * from hs_result_title_query_1w_filtered)b on a.index == b.index and b.item_id == b.item_id;

  1. 除去叶子类目中找不到的结果

create table hs_result_title_query_1w_2 as
select a.index, a.origin_query, a.query, a.title_id, a.title, b.item_id, a.score, b.cate_id, b.cate_name, a.url from
(select * from hs_result_title_query_1w_1 where title in (select title from hs_leaf_class_for_title_2))a join (select * from hs_leaf_class_for_title_2)b on a.title == b.title;

  1. 处理url
    select index, origin_query, query, title_id, title, item_id, score, cate_id, cate_name, url when url is not "\N" then CONCAT("http://cloud.video.taobao.com", url) from hs_result_title_query_1w_filtered_2 limit 10;

select index as qid, origin_query as query , title as video_titile,
case when url_k2 != "\N" then CONCAT("http://cloud.video.taobao.com", url_k2)
ELSE CONCAT("http:", url_k3)

select index as qid, origin_query as query , title as video_titile,
CONCAT("http://cloud.video.taobao.com", url) from hs_result_title_query_1w_filtered_2 limit 10;

  1. 使用top1000来取title

(0) 得到query_title对应表
create table if not exists graph_embedding.hs_heter_graph_embedding_out_nearest_neighbor_007(
node_id bigint,
emb string
) LIFECYCLE 14;

hs_heter_graph_embedding_out_nearest_neighbor_007

PAI -name am_vsearch_nearest_neighbor_014 -project algo_market
-Dcluster="{"worker":{"count":1,"gpu":100}}"
-Ddim=100
-Did_col="node_id"
-Dvector_col="emb"
-Dinput_slice=1
-Dtopk=1000
-Dnprob=1024
-Dmetric="l2"
-Dinput="odps://graph_embedding/tables/hs_heter_graph_embedding_video_recall_"
-Dquery="odps://graph_embedding/tables/hs_heter_graph_embedding_ave_info_"
-Doutputs="odps://graph_embedding/tables/hs_heter_graph_embedding_out_nearest_neighbor_007"
-DenableDynamicCluster=true -DmaxTrainingTimeInHour=60;

1000 result : hs_heter_graph_embedding_out_nearest_neighbor_007

(1) 分割result
create table hs_tmp_10 as select bi_udf:bi_split_value(node_id, emb, " ") as (query_id, title_id) from hs_heter_graph_embedding_out_nearest_neighbor_007;

create table hs_tmp_11 as select graph_embedding:hs_split(query_id, title_id, ":") as (query_id, title_id, score) from hs_tmp_10;

加title:

create table hs_tmp_12 as
select a.query_id, a.title_id, b.title, a.score from
(select * from hs_tmp_11)a join
(select title, id from hs_jingyan_query_related_video_pool_2_3)b
on a.title_id == b.id;

(2) 除去叶子类目中找不到的结果,顺便加上叶子类目信息
create table hs_tmp_13 as
select a.query_id as index, a.title_id, a.title, b.item_id, a.score, b.cate_id, b.cate_name from
(select * from hs_tmp_12 where title in (select title from hs_leaf_class_for_title_2))a join (select * from hs_leaf_class_for_title_2)b on a.title == b.title;

(3)过滤

pai -name pytorch -project algo_public_dev -Dpython=3.6 -Dscript="file:///apsarapangu/disk1/hengsong.lhs/origin_deep_cluster_odps_5.tar.gz" -DentryFile="test_query_with_title.py" -Dtables="odps://graph_embedding/tables/hs_tmp_13,odps://graph_embedding/tables/hs_leaf_class_for_query_0" -Doutputs="odps://graph_embedding/tables/hs_tmp_14" -Dbucket="oss://bucket-automl/" -Darn="acs:ram::1293303983251548:role/graph2018" -Dhost="cn-hangzhou.oss-internal.aliyun-inc.com" -DuserDefinedParameters="" -DworkerCount=1;

  1. 构造UDTF
    http://help.aliyun-inc.com/internaldoc/detail/27811.html?spm=a2c1f.8259796.3.8.733f96d5LV8C1z

/apsarapangu/disk1/hengsong.lhs/deep_cluster_odps/IDEC-pytorch/hs_udf.py
CREATE FUNCTION hs_split AS hs_udf.Processor USING hs_udf.py;

select graph_embedding:hs_split(query, title_id, ":") as (query_id, title_id, score) from hs_heter_graph_embedding_out_nearest_neighbor_007 limit 100;

相关文章

  • 20190711工作进展

    得到了title表和叶子类目的对应关系hs_leaf_class_for_title确认有些title表中的项目在...

  • 20190711

    看到这个图了,我想起了李笑来老师说的 过去,40%后是落后;现在,你以为20%后是落后;现在,实际上很可能1%后都...

  • 20190711

    1.野心和脑子一样,都是好东西 30岁时要有一番成就 2.足够专业 在所从事的行业,足够专业,足够资深。成为专家 ...

  • 20190711

    第一次写论文到这么晚。本以为这次只是帮博士师姐找文献再加上台展示,没想到由于种种原因,竟需要我自己写,真是临危授命...

  • 20190711

    我不知道要写些什么,我只知道自己最近很迷茫。我不停地在反思自己这条路是不是走错了,可否回头?但我又不甘,8年的时光...

  • 20190711

    今天是真的累。不过见了朋友,完成了重要的事情。人生上半程做加法下半程做减法。现在是该做减法的时候了。 不...

  • 20190711

    今天是我第2次参加E站到底。之前是今年1月份的时候,是第6期E站到底。转眼间半年过去了,现在都已经是7月11号了,...

  • 20190711

    吃完早餐去学校拿东西,摘菜,而后元岭市场买菜。回来后做饭,睡觉。下午换净水器的滤芯,泡茶喝,带陶陶小区玩,不久风雨...

  • 20190711

    今天接了个人咨询的第40单,有点厉害! 很多人会说自己没有资源,没有技能,没有人脉,那该怎么变现呢? 其实你有资源...

  • 20190711

    酒后的一天好痛苦,喝酒真的要适量。 后天要考试,票还没买呢,不知道该不该去。 “人好不代表在一起会开心。有缺点的家...

网友评论

      本文标题:20190711工作进展

      本文链接:https://www.haomeiwen.com/subject/nrfrkctx.html