美文网首页TensorFlow2简单入门
TensorFlow2简单入门-加载及预处理文本

TensorFlow2简单入门-加载及预处理文本

作者: K同学啊 | 来源:发表于2021-01-18 09:15 被阅读0次

    博主: 明天依旧可好
    代码:VX公众H「明天依旧可好」内回复04
    思维导图完整版:回复tf2思维导图

    import tensorflow as tf
    import tensorflow_datasets as tfds
    import os
    
    print(tf.__version__)
    """
    输出:2.5.0-dev20201226
    """
    

    数据下载

    import pathlib
    
    DIRECTORY_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/'
    FILE_NAMES = ['cowper.txt', 'derby.txt', 'butler.txt']
    
    for name in FILE_NAMES:
        text_dir = tf.keras.utils.get_file(name, origin=DIRECTORY_URL+name)
        print(text_dir)
        
    parent_dir = os.path.dirname(text_dir)
    """
    输出:
    C:\Users\Administrator\.keras\datasets\cowper.txt
    C:\Users\Administrator\.keras\datasets\derby.txt
    C:\Users\Administrator\.keras\datasets\butler.txt
    """
    

    将文本加载到数据集中

    迭代整个文件,将整个文件加载到自己的数据集中。

    每个样本都需要单独标记,所以请使用 tf.data.Dataset.map 来为每个样本设定标签。这将迭代数据集中的每一个样本并且返回( example, label )对。

    def labeler(example, index):
        return example, tf.cast(index, tf.int64)  
    
    labeled_data_sets = []
    
    for i, file_name in enumerate(FILE_NAMES):
        lines_dataset = tf.data.TextLineDataset(os.path.join(parent_dir, file_name))
        labeled_dataset = lines_dataset.map(lambda ex: labeler(ex, i))
        labeled_data_sets.append(labeled_dataset)
    

    将这些标记的数据集合并到一个数据集中,然后对其进行随机化操作。

    BUFFER_SIZE = 50000
    
    #将所有数据合并到一个数据集当中
    all_labeled_data = labeled_data_sets[0]
    for labeled_dataset in labeled_data_sets[1:]:
        all_labeled_data = all_labeled_data.concatenate(labeled_dataset)
    
    #将数据进行打乱
    all_labeled_data = all_labeled_data.shuffle(
        BUFFER_SIZE, reshuffle_each_iteration=False)
    
    #显示前5条数据
    for ex in all_labeled_data.take(5):
        print(ex)
    """
    (<tf.Tensor: shape=(), dtype=string, numpy=b'Instructed duly, and himself, his steps'>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
    (<tf.Tensor: shape=(), dtype=string, numpy=b'not forget the threat that he had made Achilles, and called his trusty'>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
    (<tf.Tensor: shape=(), dtype=string, numpy=b"Standing encompass'd by his dauntless troops,">, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
    (<tf.Tensor: shape=(), dtype=string, numpy=b'held Oechalia, the city of Oechalian Eurytus, these were commanded by'>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
    (<tf.Tensor: shape=(), dtype=string, numpy=b'him."'>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
    """
    

    将文本编码成数字

    建立词汇表

    #features这个模块已经被官方弃用,等待更新吧
    # tokenizer = tfds.features.text.Tokenizer()
    #可暂时使用下面这个进行调用
    tokenizer = tfds.deprecated.text.Tokenizer()
    
    vocabulary_set = set()
    for text_tensor, _ in all_labeled_data:
        some_tokens = tokenizer.tokenize(text_tensor.numpy())
        vocabulary_set.update(some_tokens)
    
    vocab_size = len(vocabulary_set)
    vocab_size
    """
    输出:17178
    """
    

    通过传递 vocabulary_set 到 tfds.features.text.TokenTextEncoder 来构建一个编码器。编码器的 encode 方法传入一行文本,返回一个整数列表。

    encoder = tfds.deprecated.text.TokenTextEncoder(vocabulary_set)
    
    def encode(text_tensor, label):
        encoded_text = encoder.encode(text_tensor.numpy())
        return encoded_text, label
    
    def encode_map_fn(text, label):
        #py_func不能设置返回的tensors的shape
        encoded_text, label = tf.py_function(encode, 
                                           inp=[text, label], 
                                           Tout=(tf.int64, tf.int64))
        encoded_text.set_shape([None])
        label.set_shape([])
        return encoded_text, label
    
    all_encoded_data = all_labeled_data.map(encode_map_fn)
    
    #显示前5条数据
    for ex in all_encoded_data.take(5):
        print(ex)
    """
    输出:
    (<tf.Tensor: shape=(6,), dtype=int64, numpy=array([ 2724,  4813, 14154,  7272, 12376, 16442], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
    (<tf.Tensor: shape=(13,), dtype=int64, numpy=
    array([12719,  5246,  4778,  6683,   411, 11103,  4013, 14029, 13412,
           14154, 14991, 12376,  4255], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
    (<tf.Tensor: shape=(7,), dtype=int64, numpy=array([14472, 14592,  8885,  4068, 12376, 16337, 11432], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=0>)
    (<tf.Tensor: shape=(11,), dtype=int64, numpy=
    array([10492,  5873,  4778, 14421, 15779,  9325,  4625, 15330,  9176,
            2358,  4068], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
    (<tf.Tensor: shape=(1,), dtype=int64, numpy=array([4992], dtype=int64)>, <tf.Tensor: shape=(), dtype=int64, numpy=2>)
    """
    

    注: 本文参考了官网并对其进行了删减以及部分注释与修改

    相关文章

      网友评论

        本文标题:TensorFlow2简单入门-加载及预处理文本

        本文链接:https://www.haomeiwen.com/subject/ntraaktx.html