前面[《JUC并发核心AQS同步队列原理详解》]介绍了AQS的同步等待队列的实现原理及源码分析,这节我们将介绍一下基于AQS实现的ReentranLock的应用、特性、实现原理及源码分析。
一、ReentrantLock简介
ReentrantLock位于Java的juc包里面,从JDK1.5开始出现,是基于AQS同步队列的独占模式实现的一种锁。ReentrantLock使用起来比synchronized更加灵活,可以自己控制加锁、解锁的逻辑。ReentrantLock跟synchronized一样也是可重入的锁,提供了公平/非公平两种模式:
-
公平锁:多个线程竞争锁的时候,会先判断等待队列中是否有等待的线程节点,如果有则当前线程会进行排队,锁的获取顺序符合请求的绝对时间顺序,也就是 FIFO
-
非公平锁:当前线程竞争锁的时候不管有没有其他线程节点在排队,都会先通过CAS尝试获取锁,获取失败了才会进行排队。
通过new ReentrantLock()的方式创建的是非公平锁,要想创建公平锁需要在构造方法中指定new ReentrantLock(true)。ReentrantLock的常用方法如下:
-
void lock() 获取锁,如果当前线程获取锁成功将返回,获取锁失败线程将被阻塞、挂起
-
void lockInterruptibly() throws InterruptedException 可中断的获取锁,和lock方法的不同之处在于该方法会响应中断,即在锁的获取过程中可以中断当前线程
-
boolean tryLock() 尝试非阻塞的获取锁,方法会立即返回,获取锁成功返回true,否则返回false
-
boolean tryLock(long time, TimeUnit unit) throws InterruptedException 尝试在指定超时时间内获取锁,如果当前线程获取了锁会立即返回true,如果被其他线程获取了锁则会被阻塞挂起,该方法会在下面三种情况下返回:1,在超时时间内获取了锁,返回true;2,在超时时间内线程被中断;3,超时时间结束,返回false。
-
void unlock() 释放锁
-
Condition newCondition() 获取等待通知组件,该组件与当前的锁绑定,当前线程只有获取了锁,才能调用Condition的wait()方法,调用wait()方法后会释放锁
二、ReentrantLock使用
ReentrantLock的使用方式一般如下,一定要在finally里面进行解锁,防止程序出现异常无法解锁
ReentrantLock lock = new ReentrantLock();lock.lock();try { System.out.println("获取了锁");} catch (Exception e) { e.printStackTrace();} finally { lock.unlock();}
下面通过一个程序示例,演示一下ReentrantLock的使用:对同一个lock对象做多次加锁,解锁,演示一下ReentrantLock的锁重入
public class ReentrantLockTest { private Integer counter = 0; private ReentrantLock lock = new ReentrantLock(); public void modifyResources(String threadName){ System.out.println("线程:--->"+threadName+"等待获取锁"); lock.lock(); System.out.println("线程:--->"+threadName+"第一次加锁"); counter++; System.out.println("线程:"+threadName+"做第"+counter+"件事"); //重入该锁,我还有一件事情要做,没做完之前不能把锁资源让出去 lock.lock(); System.out.println("线程:--->"+threadName+"第二次加锁"); counter++; System.out.println("线程:"+threadName+"做第"+counter+"件事"); lock.unlock(); System.out.println("线程:"+threadName+"释放一个锁"); lock.unlock(); System.out.println("线程:"+threadName+"释放一个锁"); } public static void main(String[] args) throws InterruptedException { ReentrantLockTest tp = new ReentrantLockTest(); new Thread(()->{ String threadName = Thread.currentThread().getName(); tp.modifyResources(threadName); },"Thread:张三").start(); new Thread(()->{ String threadName = Thread.currentThread().getName(); tp.modifyResources(threadName); },"Thread:李四").start(); Thread.sleep(100); }}
程序运行输出如下所示:上面代码中lock加锁两次然后解锁两次,在张三线程两次解锁完成之前,李四线程一直在等待。ReentrantLock加锁了几次,就要解锁相同的次数才可以释放锁。
线程:--->Thread:张三等待获取锁
线程:--->Thread:张三第一次加锁
线程:Thread:张三做第1件事
线程:--->Thread:张三第二次加锁
线程:--->Thread:李四等待获取锁
线程:Thread:张三做第2件事
线程:Thread:张三释放一个锁
线程:Thread:张三释放一个锁
线程:--->Thread:李四第一次加锁
线程:Thread:李四做第3件事
线程:--->Thread:李四第二次加锁
线程:Thread:李四做第4件事
线程:Thread:李四释放一个锁
线程:Thread:李四释放一个锁
三、ReentrantLock源码分析
ReentrantLock实现了Lock接口,它有一个内部类Sync实现了前面介绍过的AbstractQueuedSynchronizer,而其公平锁、非公平锁分别通过Sync的子类FairSync、NonFairSync(也是ReentrantLock的内部类)实现。下面看下其UML图
imagelock()方法调用时序图如下:
image前面《JUC并发核心AQS同步队列原理详解》介绍AQS的时候说过,AbstractQueuedSynchronizer中有一个状态变量state,在ReentrantLock中state等于0表示没有线程获取锁,如果等于1说明有线程获取了锁,如果大于1说明获取锁的线程加锁的次数,加了几次锁就必须解锁几次,每次unlock解锁state都会减1,减到0时释放锁。
1、非公平锁源码分析
前面一篇博客《JUC并发核心AQS同步队列原理详解》对AQS介绍的已经非常详细了,所以下面源码分析中牵涉AQS中的方法就不再进行介绍了,想了解的话可以看下那篇博客。
先看下非公平锁的加锁lock方法,lock方法中调用了sync的lock方法,而sync对象时根据构造ReentrantLock时是公平锁(FairSync)还是非公平锁(NonFairSync)。
public void lock() { sync.lock();}
这里调用的是非公平锁,所以我们看下 NonFairSync的lock方法:进来时不管有没有其他线程持有锁或者等待锁,会先调用AQS中的compareAndSetState方法尝试获取锁,如果获取失败,会调用AQS中的acquire方法
final void lock() { /** * 第一步:直接尝试加锁 * 与公平锁实现的加锁行为一个最大的区别在于,此处不会去判断同步队列(CLH队列)中 * 是否有排队等待加锁的节点,上来直接加锁(判断state是否为0,CAS修改state为1) * ,并将独占锁持有者 exclusiveOwnerThread 属性指向当前线程 * 如果当前有人占用锁,再尝试去加一次锁 */ if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else //AQS定义的方法,加锁 acquire(1);}
下面看下acquire方法,会先调用NonFairSync类中重写的tryAcquire方法尝试获取锁,如果获取锁失败会调用AQS中的acquireQueued方法进行排队、阻塞等处理。
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt();}
下面看下NonFairSync类中重写的tryAcquire方法,里面又调用了nonfairTryAcquire方法
protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires);}
下面看下nonfairTryAcquire方法:
- 判断state如果为0,通过CAS的方式尝试获取锁,如果获取锁成功,则将当前线程设置为独占线程
- 如果state不为0,则判断当前线程是否跟独占线程时同一个线程,如果是同一个线程则将锁的state加1,也就是锁的重入次数加1
- 否则获取锁失败,返回false
final boolean nonfairTryAcquire(int acquires) { //acquires = 1 final Thread current = Thread.currentThread(); int c = getState(); /** * 不需要判断同步队列(CLH)中是否有排队等待线程 * 判断state状态是否为0,不为0可以加锁 */ if (c == 0) { //unsafe操作,cas修改state状态 if (compareAndSetState(0, acquires)) { //独占状态锁持有者指向当前线程 setExclusiveOwnerThread(current); return true; } } /** * state状态不为0,判断锁持有者是否是当前线程, * 如果是当前线程持有 则state+1 */ else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } //加锁失败 return false;}
下面看下非公平锁的解锁过程:unlock方法中调用了AQS中的release方法
public void unlock() { sync.release(1);}
AQS中的release方法如下所示:会先调用AQS的子类Sync中重写的tryRelease方法去释放锁,如果是否锁成功,则唤醒同步队列中head的后续节点,后续节点线程被唤醒会去竞争锁。
public final boolean release(int arg) { if (tryRelease(arg)) {//释放一次锁 Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h);//唤醒后继结点 return true; } return false;}
Sync中重写的tryRelease方法:
获取当前的state值,然后减1
判断当前线程是否是锁的持有线程,如果不是会抛出异常。
如果state的值被减到了0,表示锁已经被释放,会将独占线程设置为空null,将state设置为0,返回true,否则返回false。
/** * 释放锁 */protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free;}
2、公平锁源码分析
先看下公平锁的加锁lock方法,lock方法中调用了sync的lock方法,这里调用的是FairSync的lock方法。
public void lock() { sync.lock();}
FairSync的lock方法直接调用了AQS中的acquire方法,没有像非公平锁先通过CAS的方式先去尝试获取锁
final void lock() { acquire(1);}
下面看下acquire方法,会先调用FairSync类中重写的tryAcquire方法尝试获取锁,如果获取锁失败会调用AQS中的acquireQueued方法进行排队、阻塞等处理。
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt();}
下面看下FairSync类中重写的tryAcquire方法,这个方法跟NonFairSync的唯一区别就是state为0的时候,公平锁会先通过hasQueuedPredecessors()方法判断是否队列中是否有等待的节点,如果没有才会尝试通过CAS的方式去获取锁,非公平锁不会判断直接回尝试获取锁。
protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { /** * 与非公平锁中的区别,需要先判断队列当中是否有等待的节点 * 如果没有则可以尝试CAS获取锁 */ if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { //独占线程指向当前线程 setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false;}
公平锁的unlock方法与非公平锁的代码一样,这里就不再介绍了。
网友评论