美文网首页
【Flink小试】Flink CDC DataStream AP

【Flink小试】Flink CDC DataStream AP

作者: fantasticMao | 来源:发表于2021-01-20 21:47 被阅读0次

    [toc]

    一、背景

    业务背景: MySQL增量数据实时更新同步到Kafka中供下游使用

    查看了一下Flink CDC的官方文档,其中Features的描述中提到了SQL和DataStream API不同的支持程度。

    Features
    
    1. Supports reading database snapshot and continues to read binlogs with exactly-once processing even failures happen.
    
    2. CDC connectors for DataStream API, users can consume changes on multiple databases and tables in a single job without Debezium and Kafka deployed.
    
    3. CDC connectors for Table/SQL API, users can use SQL DDL to create a CDC source to monitor changes on a single table.
    

    虽然SQL API使用很丝滑,也很简单。但是由于业务表较多,若是使用一个表的监听就开启一个Flink Job,会对资源消耗和运维操作带来很大的麻烦,所以笔者决定使用DataStream API实现单任务监听库级的MySQL CDC并根据表名将数据发往不同的Kafka Topic中。

    二、代码实现

    1. 关键maven依赖

                    <dependency>
                <groupId>com.alibaba.ververica</groupId>
                <artifactId>flink-connector-mysql-cdc</artifactId>
                <version>1.1.1</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-kafka_2.11</artifactId>
                <exclusions>
                    <exclusion>
                        <groupId>org.apache.kafka</groupId>
                        <artifactId>kafka-clients</artifactId>
                    </exclusion>
                </exclusions>
            </dependency>
            <dependency>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
                <version>2.4.0</version>
            </dependency>
    

    2. 自定义CDC数据反序列化器

    Flink CDC定义了com.alibaba.ververica.cdc.debezium.DebeziumDeserializationSchema接口用以对CDC数据进行反序列化。默认实现类com.alibaba.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchemacom.alibaba.ververica.cdc.debezium.StringDebeziumDeserializationSchema,由于我们需要自定义Schema,所以我们不采用这两周默认的实现类,自己实现该接口定义我们需要的Schema.

    定义JsonDebeziumDeserializeSchema实现DebeziumDeserializationSchema接口方法

    class JsonDebeziumDeserializeSchema extends DebeziumDeserializationSchema[String] {
    
      private final val log: Logger = LoggerFactory.getLogger(classOf[JsonDebeziumDeserializeSchema])
    
      override def deserialize(sourceRecord: SourceRecord, collector: Collector[String]): Unit = {
        val op = Envelope.operationFor(sourceRecord)
        val source = sourceRecord.topic()
        val value = sourceRecord.value().asInstanceOf[Struct]
        val valueSchema: Schema = sourceRecord.valueSchema()
        if (op != Operation.CREATE && op != Operation.READ) {
          if (op == Operation.DELETE) {
            val data = extractBeforeData(value, valueSchema)
            val record = new JSONObject()
              .fluentPut("source", source)
              .fluentPut("data", data)
              .fluentPut("op", RowKind.DELETE.shortString())
              .toJSONString
            collector.collect(record)
          } else {
            val beforeData = extractBeforeData(value, valueSchema)
            val beforeRecord = new JSONObject()
              .fluentPut("source", source)
              .fluentPut("data", beforeData)
              .fluentPut("op", RowKind.UPDATE_BEFORE.shortString())
              .toJSONString
            collector.collect(beforeRecord)
    
            val afterData = extractAfterData(value, valueSchema)
            val afterRecord = new JSONObject()
              .fluentPut("source", source)
              .fluentPut("data", afterData)
              .fluentPut("op", RowKind.UPDATE_AFTER.shortString())
              .toJSONString
            collector.collect(afterRecord)
          }
        } else {
          val data = extractAfterData(value, valueSchema)
          val record = new JSONObject()
            .fluentPut("source", source)
            .fluentPut("data", data)
            .fluentPut("op", RowKind.INSERT.shortString())
            .toJSONString
          collector.collect(record)
        }
      }
    
      override def getProducedType: TypeInformation[String] = BasicTypeInfo.STRING_TYPE_INFO
      ...
    }
    

    定义MySqlSource监听MySQL库数据变化:

    val properties = new Properties()
    properties.setProperty("snapshotMode", snapshotMode)
    
    val mysqlCdcSource = MySQLSource.builder[String]()
       .hostname(hostname)
       .port(port)
       .databaseList(database)
       .tableList(tableName)
       .username(username)
       .password(password)
       .deserializer(new JsonDebeziumDeserializeSchema)
       .debeziumProperties(properties)
       .serverId(serverId)
       .build()
    

    3. 数据动态发往Kafka不同的Topic

    由上面自定义的Schema我们可以知道,source字段的构成为mysql_binlog_source.库名.表名。此时我们可以自定义KafkaSerializationSchema来实现将不同的数据发往不同的topic,即OverridingTopicSchema:

    abstract class OverridingTopicSchema extends KafkaSerializationSchema[String] {
        val topicPrefix: String
    
        val topicSuffix: String
    
        val topicKey: String
    
        override def serialize(element: String, timestamp: lang.Long): ProducerRecord[Array[Byte], Array[Byte]] = {
          val topic = if (element != null && element.contains(topicKey)) {
            val topicStr = JSON.parseObject(element).getString(topicKey).replaceAll("\\.", "_")
            topicPrefix.concat(topicStr).concat(topicSuffix)
          } else null
          new ProducerRecord[Array[Byte], Array[Byte]](topic, element.getBytes(StandardCharsets.UTF_8))
        }
      }
    

    同时定义创建将数据动态发往不同topic的kafka生产者的方法

    /**
       * 创建将数据动态发往不同topic的kafka生产者
       *
       * @param boostrapServers          kafka集群地址
       * @param kafkaSerializationSchema kafka序列器
       * @return
       */
    def createDynamicFlinkProducer(boostrapServers: String, kafkaSerializationSchema:       KafkaSerializationSchema[String]): FlinkKafkaProducer[String] = {
        if (StringUtils.isEmpty(boostrapServers))
          throw new IllegalArgumentException("boostrapServers is necessary")
        val properties = initDefaultKafkaProducerConfig(boostrapServers)
        properties.put(ACKS_CONFIG, "all")
    
        new FlinkKafkaProducer[String](DEFAULT_TOPIC, kafkaSerializationSchema,
          properties, FlinkKafkaProducer.Semantic.EXACTLY_ONCE)
      }
    

    4. 主类完整实现

    object Cdc2KafkaByStream {
    
      def main(args: Array[String]): Unit = {
        val parameterTool = ParameterTool.fromArgs(args)
        //cdc config
        val hostname = parameterTool.get("hostname")
        val port = parameterTool.getInt("port", 3306)
        val username = parameterTool.get("username")
        val password = parameterTool.get("password")
        val database = parameterTool.get("database")
        val tableName = parameterTool.get("tableName")
        val serverId = parameterTool.getInt("serverId")
        val snapshotMode = parameterTool.get("snapshotMode", "initial")
        //kafka config
        val kafkaBrokers = parameterTool.get("kafkaBrokers")
        val kafkaTopicPrefix = parameterTool.get("kafkaTopicPrefix", "topic_")
        val kafkaTopicSuffix = parameterTool.get("kafkaTopicSuffix", "")
        val kafkaTopicKey = parameterTool.get("kafkaTopicKey", "source")
    
        val env = StreamExecutionEnvironment.getExecutionEnvironment
        ExecutionEnvUtils.configStreamExecutionEnv(env, parameterTool)
        ExecutionEnvUtils.parameterPrint(parameterTool)
    
        val properties = new Properties()
        properties.setProperty("snapshotMode", snapshotMode)
    
        val mysqlCdcSource = MySQLSource.builder[String]()
          .hostname(hostname)
          .port(port)
          .databaseList(database)
          .tableList(tableName)
          .username(username)
          .password(password)
          .deserializer(new JsonDebeziumDeserializeSchema)
          .debeziumProperties(properties)
          .serverId(serverId)
          .build()
    
        val kafkaSink = KafkaUtils.createDynamicFlinkProducer(kafkaBrokers, new OverridingTopicSchema() {
          override val topicPrefix: String = kafkaTopicPrefix
          override val topicSuffix: String = kafkaTopicSuffix
          override val topicKey: String = kafkaTopicKey
        })
        env.addSource(mysqlCdcSource).addSink(kafkaSink).setParallelism(1)
        env.execute()
      }
    }
    

    启动任务后可以看到kakfa中根据表名创建了不同的topic,并保存了不同表里的数据。

    至此,实现了使用DataStream API单任务监听库级的MySQL CDC并根据表名将数据发往不同的Kafka Topic的功能。

    三、小结

    本文主要介绍了通过Flink CDC DataStream API实现监听MySQL库数据发往kafka不同Topic的功能,其中运用到自定义DebeziumDeserializationSchema实现CDC Schema自定义反序列化解析以及自定义KafkaSerializationSchema实现根据数据内容将消息发送到不同的topic等功能。

    相关文章

      网友评论

          本文标题:【Flink小试】Flink CDC DataStream AP

          本文链接:https://www.haomeiwen.com/subject/nvzkzktx.html