加载数据包
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
print("packs loaded")
解压、读取数据包
print("Download and Extract MNIST dataset")
mnist = input_data.read_data_sets('data/',one_hot=True)
print
print("type of 'mnist' is %s" %(type(mnist)))
print("number of train data is %d" %(mnist.train.num_examples))
print("number of test data is %d" %(mnist.test.num_examples))
观察数据集
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
print
print("type of 'trainimg' is %s" %(type(trainimg)))
print("type of 'trainlabel' is %s" %(type(trainlabel)))
print("type of 'testimg' is %s" %(type(testimg)))
print("type of 'testlabel' is %s" %(type(testlabel)))
print("shape of 'trainimg' is %s" %(trainimg.shape,))
print("shape of 'trainlabel' is %s" %(trainlabel.shape,))
print("shape of 'testimg' is %s" %(testimg.shape,))
print("shape of 'testlabel' is %s" %(testlabel.shape,))
训练集数据元素的直观展示
print("How does the training data look like")
nsample = 5
randidx = np.random.randint(trainimg.shape[0], size = nsample)
for i in randidx:
curr_img = np.reshape(trainimg[i,:],(28,28)) # 28 by 28 matrix
curr_label = np.argmax(trainlabel[i,:]) # label
plt.matshow(curr_img,cmap=plt.get_cmap('gray'))
plt.title(""+str(i)+"th Training Data" + "Label is "+str(curr_label))
print(""+str(i)+"th Training Data" + "Label is "+str(curr_label))
plt.show()
获得一批数据并观察数据类型和形状
print("Batch Learning")
batch_size = 100
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
print("type of 'batch_xs' is %s" %(type(batch_xs)))
print("type of 'batch_ys' is %s" %(type(batch_ys)))
print("shape of 'batch_xs' is %s" %(batch_xs.shape,))
print("shape of 'batch_ys' is %s" %(batch_ys.shape,))
网友评论