美文网首页
Auto-Encoder

Auto-Encoder

作者: yanghedada | 来源:发表于2018-09-06 16:22 被阅读16次
    # -*- coding: utf-8 -*-
    """
    Created on Tue Dec 19 12:11:27 2017
    
    @author: YANG_HE
    """
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    #%matplotlib inline
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets(r'E:\python\minst', one_hot=True)
    
    # Parameters
    learning_rate = 0.01
    training_epochs = 20
    batch_size = 256
    display_step = 1
    examples_to_show = 10
    
    # Network Parameters
    n_hidden_1 = 256 # 1st layer num features
    n_hidden_2 = 128 # 2nd layer num features
    n_input = 784 # MNIST data input (img shape: 28*28)
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    
    weights = {
        'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
        'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b2': tf.Variable(tf.random_normal([n_input])),
    }
    
    
    # Building the encoder
    def encoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        return layer_2
    
    
    # Building the decoder
    def decoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        return layer_2
    
    # Construct model
    encoder_op = encoder(X)
    decoder_op = decoder(encoder_op)
    
    # Prediction
    y_pred = decoder_op
    # Targets (Labels) are the input data.
    y_true = X
    
    # Define loss and optimizer, minimize the squared error
    cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
    optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    # Launch the graph
    with tf.Session() as sess:
        sess.run(init)
        total_batch = int(mnist.train.num_examples/batch_size)
        # Training cycle
        for epoch in range(training_epochs):
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
            # Display logs per epoch step
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1),
                      "cost=", "{:.9f}".format(c))
    
        print("Optimization Finished!")
    
        # Applying encode and decode over test set
        encode_decode = sess.run(
            y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
        # Compare original images with their reconstructions
        f, a = plt.subplots(2, 10, figsize=(10, 2))
        for i in range(examples_to_show):
            a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
            a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
        f.show()
        plt.draw()
        plt.waitforbuttonpress()
    

    相关文章

      网友评论

          本文标题:Auto-Encoder

          本文链接:https://www.haomeiwen.com/subject/nxbxgftx.html