美文网首页动态规划
[Backtracking/DP]72. Edit Distan

[Backtracking/DP]72. Edit Distan

作者: 野生小熊猫 | 来源:发表于2019-02-10 06:13 被阅读0次
    • 分类:Backtracking/DP
    • 时间复杂度: O(m*n)

    72. Edit Distance

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

    You have the following 3 operations permitted on a word:

    1. Insert a character
    2. Delete a character
    3. Replace a character

    Example 1:

    Input: word1 = "horse", word2 = "ros"
    Output: 3
    Explanation: 
    horse -> rorse (replace 'h' with 'r')
    rorse -> rose (remove 'r')
    rose -> ros (remove 'e')
    

    Example 2:

    Input: word1 = "intention", word2 = "execution"
    Output: 5
    Explanation: 
    intention -> inention (remove 't')
    inention -> enention (replace 'i' with 'e')
    enention -> exention (replace 'n' with 'x')
    exention -> exection (replace 'n' with 'c')
    exection -> execution (insert 'u')
    

    代码:

    DP解法:

    class Solution:
        def minDistance(self, word1: 'str', word2: 'str') -> 'int':
            
            m=len(word1)
            n=len(word2)
            
            dp=[[0 for i in range(n+1)] for i in range(m+1)]
            
            for i in range(1,m+1):
                dp[i][0]=dp[i-1][0]+1
            for j in range(1,n+1):
                dp[0][j]=dp[0][j-1]+1
                
            for i in range(1,m+1):
                for j in range(1,n+1):
                    if (word1[i-1]==word2[j-1]):
                        dp[i][j]=dp[i-1][j-1]
                    else:
                        #                 replace     insert      delete
                        dp[i][j]=min(min(dp[i-1][j-1],dp[i][j-1]),dp[i-1][j])+1
            
            return dp[-1][-1]
    

    记忆化递归解法:

    class Solution:
        def minDistance(self, word1: 'str', word2: 'str') -> 'int':
            
            m=len(word1)
            n=len(word2)
            
            res=self.paths(word1,word2,m,n,{})
            
            return res
        
        def paths(self, word1, word2, m, n, memo):   
            if (m,n) in memo:
                return memo[(m,n)]
            
            else:
                #退出条件
                if m==0 or n==0:
                    memo[(m,n)]=max(m,n)
                    return memo[(m,n)]
    
                if word1[m-1]==word2[n-1]:
                    memo[(m,n)]=self.paths(word1,word2,m-1,n-1,memo)
                else:
                    memo[(m,n)]=1+min(self.paths(word1,word2,m-1,n-1,memo),min(self.paths(word1,word2,m-1,n,memo),self.paths(word1,word2,m,n-1,memo)))
                    
                return memo[(m,n)]
    

    讨论:

    1.记忆化递归比DP快
    2.如果实在不能在一个循环里搞对的话弄两个循环也是OK的

    相关文章

      网友评论

        本文标题:[Backtracking/DP]72. Edit Distan

        本文链接:https://www.haomeiwen.com/subject/nyrteqtx.html