美文网首页
BFS 广度优先搜索

BFS 广度优先搜索

作者: bowen_wu | 来源:发表于2022-09-26 11:28 被阅读0次

    概述

    • 从根开始(图则选择一些任意节点作为根)并且在移动到下一级邻居之前首先探索邻居节点
    • 以当前节点为圆心画圆,层层递进,将覆盖的节点放入队列
    • 不需要递归,利用队列解决
    • 图 BFS 需要涂色

    场景

    • 树的层序遍历
    • 图搜索/遍历
    • 拓扑排序
    • 求最短路径
    • 能用 BFS 速求的题目就不要用 DFS

    二叉树 BFS 模板

    import java.util.ArrayList;
    
    public class BinaryTreeLevelOrder {
        public List<List<Integer>> levelOrder(TreeNode root) {
            // Ideas: BFS => queue => for loop for every level
            List<List<Integer>> result = new ArrayList<>();
    
            // check input
            if (root == null) {
                return result;
            }
    
            // Queue
            Queue<TreeNode> queue = new LinkedList<>();
            queue.offer(root);
    
            // number of every level
            int size;
    
            // traversal
            while (!queue.isEmpty()) {
                // single result of every level
                List<Integer> list = new ArrayList<>();
                size = queue.size();
                for (int i = 0; i < size; i++) {
                    TreeNode node = queue.poll();
                    list.add(node.val);
                    if (node.left != null) {
                        queue.offer(node.left);
                    }
                    if (node.right != null) {
                        queue.offer(node.right);
                    }
                }
    
                result.add(list);
            }
    
            return result;
        }
    }
    

    图中 BFS

    public class BFSInGraph {
        public void bfsInGraph(int nodeNum, int[] edges, int[][] adjacencyMatrix) {
            // check input
            if (nodeNum < 1 || adjacencyMatrix == null || adjacencyMatrix.length == 0 || adjacencyMatrix[0] == null || adjacencyMatrix[0].length == 0) {
                return;
            }
    
            // construct adjacencyList => Map<Node, List<Node>> => node -> adjacency node
            Map<Integer, List<Integer>> adjacencyList = new HashMap<>();
            for (int i = 0; i < nodeNum; i++) {
                adjacencyList.add(i, new ArrayList<>());
            }
            for (int i = 0; i < edges.length; i++) {
                int u = edges[i][0];
                int v = edges[i][1];
                adjacencyList.get(u).add(v);
                adjacencyList.get(v).add(u);
            }
    
            // marked
            boolean[] visited = new boolean[nodeNum];
            boolean[] visited = new boolean[adjacencyMatrix.length];
            int connectComponentCount = 0;
    
            // traversal in adjacencyList
            for (int node : adjacencyList.keySet()) {
                if (specialCondition && !visited[node]) {
                    bfs(adjacencyList, adjacencyMatrix, visited, node);
                    connectComponentCount++;
                }
            }
    
            // traversal in adjacencyMatrix
            for (int i = 0; i < adjacencyMatrix.length; i++) {
                if (specialCondition && !visited[i]) {
                    bfs(adjacencyList, adjacencyMatrix, visited, i);
                    connectComponentCount++;
                }
            }
        }
    
        private void bfs(Map<Integer, List<Integer>> adjacencyList, int[][] adjacencyMatrix, boolean[] visited, int start) {
            // queue
            Queue<Integer> queue = new LinkedList<>();
    
            // offer & marked
            queue.offer(start);
            visited[start] = true;
    
            // traversal in adjacencyList
            while (!queue.isEmpty()) {
                int node = queue.poll();
    
                // traversal adjacency node
                for (int adjacencyNode : adjacenList.get(node)) {
                    if (specialCondition && !visited[adjacencyNode]) {
                        // offer & marked
                        queue.offer(adjacencyNode);
                        visited[adjacencyNode] = true;
                    }
                }
            }
    
            // traversal in adjacencyMatrix
            while (!queue.isEmpty()) {
                int node = queue.poll();
    
                // traversal adjacency node
                for (int i = 0; i < adjacencyMatrix[node].length; i++) {
                    if (specialCondition && !visited[i]) {
                        // offer & marked
                        queue.offer(i);
                        visited[i] = true;
                    }
                }
            }
        }
    }
    

    二维问题 BFS

    public class BFSInMatrix {
        private int[] dx = {1, 0, -1, 0};
        private int[] dy = {0, -1, 0, 1};
    
        public void bfsInMatrix(int[][] matrix) {
            // 时间复杂度:O(m * n)
            // 空间复杂度:O(m * n)
            // check input
            if (matrix == null || matrix.length == 0 || matrix[0] == null || matrix[0].length == 0) {
                return;
            }
    
            // marked
            int m = matrix.length;
            int n = matrix[0].length;
            boolean[][] visited = new boolean[m][n];
            int connectComponentCount = 0;
    
            // traversal
            for (int i = 0; i < m; i++) {
                for (int j = 0; j < n; j++) {
                    if (specialCondition && !visited[i][j]) {
                        bfs(matrix, visited, i, j);
                        connectComponentCount++;
                    }
                }
            }
        }
    
        public void bfs(int[][] matrix, boolean[][] visited, int x, int y) {
            // queue
            Queue<Point> queue = new LinkedList<>();
    
            // offer & marked
            queue.offer(new Point(x, y));
            visited[x][y] = true;
    
            // move
            while (!queue.isEmpty()) {
                Point point = queue.poll();
                for (int i = 0; i < 4; i++) {
                    int newX = point.x + dx[i];
                    int newY = point.y + dy[i];
                    if (checkRange(matrix, newX, newY) && !visited[newX][newY] && specialContition) {
                        // offer & marked
                        queue.offer(new Point(newX, newY));
                        visited[newX][newY] = true;
                    }
                }
            }
        }
    
        private boolean checkRange(int[][] matrix, int x, int y) {
            return x >= 0 && x < matrix.length && y >= 0 && y < matrix[0].length;
        }
    
        class Point {
            int x;
            int y;
    
            public Point(int x, int y) {
                this.x = x;
                this.y = y;
            }
        }
    }
    

    拓扑排序 Topological Sort

    对于一个有向无环图(DAG)进行拓扑排序,是将 DAG 中所有顶点排成一个线性序列,使得对图中任意一条边(u, v),u 在线性序列中出现在 v 之前。通常这样的线性序列成为满足拓扑次序(Topological Order)的序列,简称拓扑序列

    1. 必须是有向无环图(DAG)才有拓扑排序
    2. 若存在一条从顶点A到顶点B的路径,那么在序列中顶点A出现在顶点B之前
    • 拓扑排序通常用来排序具有依赖关系的任务
    • 拓扑排序并不唯一

    卡恩算法

    1. 遍历所有图节点,把入度为0的节点入队
    2. 当队列不为空时,取出一个节点 v 放入序列
    3. 将与 v 相邻的节点入度减1,然后把减1后入度为0的节点入队
    4. 重复 2,3 步,直到队列为空,返回序列即为拓扑序列
    5. 如果拓扑序列中节点数量少于图节点数量则说明该有向图存在环

    要点

    1. 计算每个节点的入度,用 map 维护
    2. 将入度为0的节点均加入队列
    3. while 循环队列,取出节点
    4. 得到节点的邻接节点,将所有邻接节点的入度减1,并更新 map
    5. 若邻接节点更新后的入度为0,加入队列

    实现

    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.Collections;
    import java.util.HashMap;
    import java.util.LinkedList;
    import java.util.List;
    import java.util.Map;
    import java.util.Queue;
    
    public class DirectedGraph {
        private final List<DirectedGraphNode> graphNodes;
    
        public DirectedGraph(List<DirectedGraphNode> graphNodes) {
            this.graphNodes = graphNodes;
        }
    
        public List<DirectedGraphNode> topologicalSort() {
            // 1. 计算每个图节点的入度,用 map 维护,key:当前图节点,value:入度值
            Map<DirectedGraphNode, Integer> inDegreeMap = new HashMap<>();
            for (DirectedGraphNode node : graphNodes) {
                for (DirectedGraphNode adjacencyNode : node.getAdjacencyNodes()) {
                    inDegreeMap.merge(adjacencyNode, 1, Integer::sum);
                }
            }
    
            // 2. 将入度为 0 的节点入队
            Queue<DirectedGraphNode> queue = new LinkedList<>();
            for (DirectedGraphNode node : graphNodes) {
                if (!inDegreeMap.containsKey(node)) {
                    queue.offer(node);
                }
            }
    
    
            // 3. BFS
            List<DirectedGraphNode> topologicalList = new ArrayList<>();
            while (!queue.isEmpty()) {
                DirectedGraphNode node = queue.poll();
                topologicalList.add(node);
    
                // 得到节点的邻接节点,将所有邻接节点的入度减1,并更新 map => 若邻接节点更新后的入度为0,加入队列
                for (DirectedGraphNode adjacencyNode : node.getAdjacencyNodes()) {
                    int newInDegree = inDegreeMap.get(adjacencyNode) - 1;
                    inDegreeMap.put(adjacencyNode, newInDegree);
                    if (newInDegree == 0) {
                        queue.offer(adjacencyNode);
                    }
                }
            }
    
            return topologicalList;
        }
    
        public static void main(String[] args) {
            DirectedGraphNode node5 = new DirectedGraphNode(5);
            DirectedGraphNode node2 = new DirectedGraphNode(2, Collections.singletonList(node5));
            DirectedGraphNode node3 = new DirectedGraphNode(3, Collections.singletonList(node5));
            DirectedGraphNode node6 = new DirectedGraphNode(6, Collections.singletonList(node5));
            DirectedGraphNode node4 = new DirectedGraphNode(4, Arrays.asList(node5, node6));
            DirectedGraphNode node1 = new DirectedGraphNode(1, Arrays.asList(node2, node3, node4));
            List<DirectedGraphNode> graphNodes = Arrays.asList(node1, node2, node3, node4, node5, node6);
            DirectedGraph directedGraph = new DirectedGraph(graphNodes);
            List<DirectedGraphNode> directedGraphNodes = directedGraph.topologicalSort();
            directedGraphNodes.forEach(node -> System.out.println(node.getNo()));
        }
    }
    

    模板

    public class TopologicalSort {
        public List<Integer> topologicalSort(int nodeNum, int[] edges, int[][] adjacencyMatrix) {
            // check input
            if (nodeNum < 1 || adjacencyMatrix == null || adjacencyMatrix.length == 0 || adjacencyMatrix[0] == null || adjacencyMatrix[0].length == 0) {
                return null;
            }
    
            // 1. construct adjacency list
            Map<Integer, List<Integer>> adjacencyList = new HashMap<>();
            for (int i = 0; i < nodeNum; i++) {
                adjacencyList.put(i, new ArrayList<>());
            }
            for (int i = 0; i < edges.length; i++) {
                int u = edges[i][0];
                int v = edges[i][1];
    
                adjacencyList.get(u).add(v);
                adjacencyList.get(v).add(u);
            }
    
            // 2. calculate in degree -> int -> int => adjacency list
            int[] inDegree = new int[nodeNum];
            for (int node : adjacency.keySet()) {
                inDegree[node] = adjacency.get(node).size();
            }
    
            // 2. calculate in degree -> int -> int => adjacency matrix
            int[] inDegree = new int[adjacencyMatrix.length];
            for (int i = 0; i < adjacencyMatrix.length; i++) {
                int currentInDegree = 0;
                for (int j = 0; j < adjacencyMatrix[i].length; j++) {
                    if (adjacencyMatrix[i][j] != 0) {
                        currentInDegree++;
                    }
                }
                inDegree[i] = currentInDegree;
            }
    
            // 3. in degree is zero push queue
            Queue<Integer> queue = new LinkedList<>();
            for (int i = 0; i < inDegree.length; i++) {
                if (inDegree[i] == 0) {
                    queue.offer(i);
                }
            }
    
            // 4. BFS
            List<Integer> topologicalList = new ArrayList<>();
            while (!queue.isEmpty()) {
                int node = queue.poll();
                topologicalList.add(node);
    
                // 5. adjacency node in degree subtract 1 => adjacency list
                for (int adjacencyNode : adjacencyList.get(node)) {
                    int newIndegree = inDegree[adjacencyNode] - 1;
                    inDegree[adjacencyNode] = newIndegree;
                    if (newIndegree == 0) {
                        queue.offer(adjacencyNode);
                    }
                }
    
                // 5. adjacency node in degree subtract 1 => adjacency matrix 
                for (int i = 0; i < adjacencyMatrix[node].length; i++) {
                    if (adjacencyMatrix[node][i] == 1) {
                        int newInDegree = inDegree[i] - 1;
                        inDegree[i] = newIndegree;
                        if (newIndegree == 0) {
                            queue.offer(i);
                        }
                    }
                }
            }
    
            return topologicalList;
        }
    }
    

    最短路径相关问题 BFS

    • 由于 BFS 层层遍历的特点,可以解决部分最短路径问题
    1. 二叉树最小深度
    2. 走出迷宫的最短路径

    双向 BFS

    • 单向 BFS 的局限 => 搜索空间可能巨大
    • 分别从起点和终点出发进行 BFS,看是否能够相遇
    • 需要维护两个队列,用数组或哈希表记录搜索状态
    • 当某个节点被两个 BFS 同时标记则搜索结束
    • 尽可能让两个方向搜索平均 => Q1 > Q2 时,只移动 Q2

    相关文章

      网友评论

          本文标题:BFS 广度优先搜索

          本文链接:https://www.haomeiwen.com/subject/oacwnrtx.html