
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 生成两百个随机点
x_data = np.linspace(-0.5, 0.5, 200)[:,np.newaxis]
# 生成与x_data形状一样的干扰值
noise = np.random.normal(0, 0.02, x_data.shape)
# 定义一个函数
y_data = np.square(x_data) + noise
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])
# 构建神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([1, 10]))
biases_L1 = tf.Variable(tf.zeros([1, 10]))
Wx_plus_b_L1 = tf.matmul(x, Weights_L1) + biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)
# 定义输出层
Weights_L2 = tf.Variable(tf.random_normal([10, 1]))
biases_L2 = tf.Variable(tf.zeros([1, 1]))
Wx_plus_b_L2 = tf.matmul(L1, Weights_L2) + biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)
# 二次代价函数
loss = tf.reduce_mean(tf.square(y-prediction))
# 使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
# 变量的初始化
sess.run(tf.global_variables_initializer())
# 开始训练
for _ in range(2000):
sess.run(train_step, feed_dict={x:x_data, y:y_data})
# 获得预测值
prediction_value = sess.run(prediction, feed_dict={x:x_data})
# 画图
plt.figure()
plt.scatter(x_data, y_data)
plt.plot(x_data, prediction_value, 'r-', lw=5)
plt.show()

np.linspace(-0.5, 0.5, 200)
指在-5到5的范围里,生成200个随机数
[:,np.newaxis]
将所得一维数据再添加一个维度,形成二维数据
网友评论