美文网首页
Python量化教程 常用函数

Python量化教程 常用函数

作者: d5ba3f2ca2b6 | 来源:发表于2018-12-20 10:20 被阅读172次

    # -*- coding: utf-8 -*-

    # @Author: fangbei

    # @Date:  2017-08-26

    # @Original:

    price_str = '30.14, 29.58, 26.36, 32.56, 32.82'

    price_str = price_str.replace(' ', '')  #删除空格

    price_array = price_str.split(',')      #转成数组

    date_array = []

    date_base = 20170118

    '''

    # for 循环

    for _ in range(0, len(price_array)):

        date_array.append(str(date_base))

        date_base += 1

    '''

    #推导式comprehensions(又称解析式),是Python的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列的结构体。

    #列表推导式

    date_array = [str(date_base + ind) for ind, _ in enumerate(price_array)]

    print(date_array)

    # ['20170118', '20170119', '20170120', '20170121', '20170122']

    # zip函数

    stock_tuple_list = [(date, price) for date, price in zip(date_array, price_array)]

    print(stock_tuple_list)

    # [('20170118', '30.14'), ('20170119', '29.58'), ('20170120', '26.36'), ('20170121', '32.56'), ('20170122', '32.82')]

    #字典推导式

    stock_dict = {date: price for date, price in zip(date_array, price_array)}

    print(stock_dict)

    # {'20170118': '30.14', '20170119': '29.58', '20170120': '26.36', '20170121': '32.56', '20170122': '32.82'}

    # 可命名元组 namedtuple

    from collections import namedtuple

    stock_nametuple = namedtuple('stock', ('date', 'price'))

    stock_nametuple_list = [stock_nametuple(date, price) for date, price in zip(date_array, price_array)]

    print(stock_nametuple_list)

    # [stock(date='20170118', price='30.14'), stock(date='20170119', price='29.58'), stock(date='20170120', price='26.36'), stock(date='20170121', price='32.56'), stock(date='20170122', price='32.82')]

    # 有序字典 OrderedDict

    from collections import OrderedDict

    stock_dict = OrderedDict((date, price) for date, price in zip(date_array, price_array))

    print(stock_dict.keys())

    # odict_keys(['20170118', '20170119', '20170120', '20170121', '20170122'])

    #最小收盘价

    print(min(zip(stock_dict.values(), stock_dict.keys())))

    # ('26.36', '20170120')

    #lambad函数

    func = lambda x:x+1

    #以上lambda等同于以下函数

    def func(x):

        return(x+1)

    #找出收盘价中第二大的价格

    find_second_max_lambda = lambda dict_array : sorted(zip(dict_array.values(), dict_array.keys()))[-2]

    print(find_second_max_lambda(stock_dict))

    # ('32.56', '20170121')

    #高阶函数

    #将相邻的收盘价格组成tuple后装入list

    price_float_array = [float(price_str) for price_str in stock_dict.values()]

    pp_array = [(price1, price2) for price1, price2 in zip(price_float_array[:-1], price_float_array[1:])]

    print(pp_array)

    # [(30.14, 29.58), (29.58, 26.36), (26.36, 32.56), (32.56, 32.82)]

    from functools import reduce

    #外层使用map函数针对pp_array()的每一个元素执行操作,内层使用reduce()函数即两个相邻的价格, 求出涨跌幅度,返回外层结果list

    change_array = list(map(lambda pp:reduce(lambda a,b: round((b-a) / a, 3),pp), pp_array))

    # print(type(change_array))

    change_array.insert(0,0)

    print(change_array)

    # [0, -0.019, -0.109, 0.235, 0.008]

    #将涨跌幅数据加入OrderedDict,配合使用namedtuple重新构建数据结构stock_dict

    stock_nametuple = namedtuple('stock', ('date', 'price', 'change'))

    stock_dict = OrderedDict((date, stock_nametuple(date, price, change))

                            for date, price, change in

                            zip(date_array, price_array, change_array))

    print(stock_dict)

    # OrderedDict([('20170118', stock(date='20170118', price='30.14', change=0)), ('20170119', stock(date='20170119', price='29.58', change=-0.019)), ('20170120', stock(date='20170120', price='26.36', change=-0.109)), ('20170121', stock(date='20170121', price='32.56', change=0.235)), ('20170122', stock(date='20170122', price='32.82', change=0.008))])

    #用filter()进行筛选,选出上涨的交易日

    up_days = list(filter(lambda day: day.change > 0, stock_dict.values()))

    print(up_days)

    # [stock(date='20170121', price='32.56', change=0.235), stock(date='20170122', price='32.82', change=0.008)]

    #定义函数计算涨跌日或涨跌值

    def filter_stock(stock_array_dict, want_up=True, want_calc_sum=False):

        if not isinstance(stock_array_dict, OrderedDict):

            raise TypeError('stock_array_dict must be OrderedDict')

        filter_func = (lambda day: day.change > 0) if want_up else (lambda day: day.change < 0)

        want_days = list(filter(filter_func, stock_array_dict.values()))

        if not want_calc_sum:

            return want_days

        change_sum = 0.0

        for day in want_days:

            change_sum += day.change

        return change_sum

    #偏函数 partial

    from functools import partial

    filter_stock_up_days    = partial(filter_stock, want_up=True,  want_calc_sum=False)

    filter_stock_down_days  = partial(filter_stock, want_up=False, want_calc_sum=False)

    filter_stock_up_sums    = partial(filter_stock, want_up=True,  want_calc_sum=True)

    filter_stock_down_sums  = partial(filter_stock, want_up=False, want_calc_sum=True)

    print('所有上涨的交易日:{}'.format(list(filter_stock_up_days(stock_dict))))

    print('所有下跌的交易日:{}'.format(list(filter_stock_down_days(stock_dict))))

    print('所有上涨交易日的涨幅和:{}'.format(filter_stock_up_sums(stock_dict)))

    print('所有下跌交易日的跌幅和:{}'.format(filter_stock_down_sums(stock_dict)))

    # 所有上涨的交易日:[stock(date='20170121', price='32.56', change=0.235), stock(date='20170122', price='32.82', change=0.008)]

    # 所有下跌的交易日:[stock(date='20170119', price='29.58', change=-0.019), stock(date='20170120', price='26.36', change=-0.109)]

    # 所有上涨交易日的涨幅和:0.243

    # 所有下跌交易日的跌幅和:-0.128

    来源:博客园    作者:比特量化

    ------------------------------------------------------------------------------------------------

    拓展阅读:如何使用Python实现你的股票量化交易模型

    相关文章

      网友评论

          本文标题:Python量化教程 常用函数

          本文链接:https://www.haomeiwen.com/subject/oawekqtx.html